# Tame tree algebras and integral quadratic forms 

based on the talk by Thomas Brüstle (Bielefeld)

February 20, 2001

Let $k$ be a fixed algebraically closed field. By an algebra we mean a finite dimensional algebra over $k$. Usually we assume that considered algebras are path algebras of bound quivers. Given an algebra $A$ we may define two quadratic forms on $K_{0}(A)$ : the Euler form $\chi_{A}$ and the Tits form $q_{A}$. The Euler from is well defined if gl. $\operatorname{dim} A<\infty$ and it is given by

$$
\chi_{A}([X]):=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{dim}_{k} \operatorname{Ext}_{A}^{i}(X, X) .
$$

For the Tits form we have

$$
q_{A}([X]):=\sum_{i=0}^{2}(-1)^{i} \operatorname{dim}_{K} \operatorname{Ext}_{A}^{i}(X, X) .
$$

Theorem (Gabriel). Assume $A$ is the path algebra of the quiver $Q$.
(1) $A$ is representation-finite.
(2) $\chi_{A}$ is positive.
(3) $Q$ is a disjoint union of Dynkin quivers.

Theorem (Ringel-Dlab). Let $A$ be a path algebra of a connected quiver $Q$. The following conditions are equivalent.
(1) A is tame, but not representation finite.
(2) $\chi_{A}$ is nonnegative, but not positive.
(3) $Q$ is an Euclidean quiver.

By $\bmod A$ we will denote the category of finite dimensional modules over $A$ and $D^{b}(A)$ denotes the bounded derived category of $\bmod A$. If $A$ and $B$ are algebras such that $D^{b}(A)$ and $D^{b}(B)$ are equivalent as triangulated categories then the Euler forms $\chi_{A}$ and $\chi_{B}$ are $\mathbb{Z}$-equivalent, i.e. there exists a $\mathbb{Z}$-invertible matrix $T$ such that $\chi_{A}=\chi_{B} T$.

The quadratic forms $p: \mathbb{Z}^{n} \rightarrow \mathbb{Z}$ of the form

$$
p(x)=\sum_{i=1}^{n} x_{i}^{2}+\sum_{1 \leq i<j \leq n} p_{i, j} x_{i} x_{j}
$$

will be called unit forms. The $\mathbb{Z}$-equivalence classes of positive unit forms correspond to Dynkin diagrams.

Let $p$ be a nonnegative unit form. Then $\operatorname{rad} p$, which is by definition the set of all $x$ such that $p(x)=0$, is a subgroup of $\mathbb{Z}^{n}$. We have an induced positive unit form $\bar{p}: \mathbb{Z}^{n} / \operatorname{rad} p \rightarrow \mathbb{Z}$, where $\mathbb{Z}^{n} / \operatorname{rad} p \simeq \mathbb{Z}^{n-c}$ and $c$ is called the corank of $p$. We know that $\bar{p}$ is positive, hence is $\mathbb{Z}$-equivalent to the form of disjoint union of Dynkin diagrams.

Theorem (Barrot-de la Peña). The unit form $p$ is uniquely determined, up to $\mathbb{Z}$-equivalence, by its corank and the Dynkin type of $\bar{p}$.

The forms with corank 1 are given by Euclidean diagrams and there is no quiver $Q$ with nonnegative form and corank at least 2 .

An algebra $A=k Q / I$ is called a tree algebra if $Q$ is a tree. Tree algebras are uniquely determined by $q_{A}$.

Theorem. Let $A$ be a tree algebra. Then $A$ is tame if and only if $q_{A}\left(\mathbb{N}^{n}\right) \geq 0$. Moreover, $D^{b}(A)$ is tame if and only if $\chi_{A}$ is nonnegative.

For any $c \in \mathbb{N}$ there are tree algebras $A$ with nonnegative Euler form such that corank of $\chi_{A}$ equals $c$.

Let $\Delta$ be a Dynkin quiver. We have the corresponding representation finite algebra $k \Delta$. Moreover, the positive unit forms are classified by Dynkin diagrams. On the other hand, we have a semisimple complex Lie algebras $\mathfrak{g}_{\Delta}$ corresponding to $\Delta$. It is known that $\mathfrak{g}_{\Delta}=\mathfrak{g}^{-} \oplus \mathfrak{h} \oplus \mathfrak{g}^{+}$with $\mathfrak{g}^{+}=\bigoplus_{\alpha \in \Phi^{+}} \mathfrak{g}_{\alpha}$, where $\Phi^{+}=\chi_{A}^{-1}(1)$ is the set of dimension vectors of indecomposable $k \Delta$ modules. We can introduce the Lie bracket $[-,-]$ in $\mathbb{C} \Phi^{+}$such that it gives a Lie algebra isomorphic to $\mathfrak{g}^{+}$.

Let $A=K Q / I$ be a finite dimensional algebra. Let $S_{1}, \ldots, S_{n}$ be the complete set of representatives of simple $A$-modules and $\Omega$ be the set of words in $\left\{S_{1}, \ldots, S_{n}\right\}$. We define a ring structure on $\mathbb{C} \Omega$ by multiplication coming from the concatenation of words. Let $R$ be an ideal consisting of all $f \in \mathbb{C} \Omega$
such that $f(M)=0$ for any $M \in \bmod A$. Here, for $f=\sum_{\omega \in \Omega} c_{\omega} \omega$ we have $f(M):=\sum_{\omega \in \Omega} c_{\omega} \omega(M)$, where $\omega(M)$, with $\omega=S_{i_{0}} \cdots S_{i_{k-1}}$, is the EulerPoincare characteristic of the variety of filtrations $0=M_{k} \subset \cdots \subset M_{0}=M$ such that $M_{j} / M_{j+1} \simeq S_{i_{j}}$. Let $\mathscr{C}_{A}$ be the Lie subalgebra of $(\mathbb{C} \Omega / R,[-,-])$ with $[f, g]:=f g-g f$, generated by $S_{1}, \ldots, S_{n}$.

Theorem (Ringel, 1990). Let $A$ be the path algebra of a Dynkin quiver $\Delta$. Then $\mathfrak{g}_{\Delta}^{+}$is isomorphic to $\mathscr{C}_{A}$ as a Lie algebra.

It has been proved by Frenkel-Malkin-Vybornov using reflection functors.
Theorem (Frenkel-Malkin-Vybornov). If $A$ is the path algebra of an Euclidean quiver $\Delta$, then $\mathfrak{g}_{\Delta}^{+}$is isomorphic to $\mathscr{C}_{A}$ as a Lie algebra, where $\mathfrak{g}_{\Delta}^{+}$is a positive part of the affine Kac-Moody algebra, which is given by generators $S_{1}, \ldots, S_{n}$ and Serre relations, that is $\left[S_{i}, S_{j}\right]=0$ if there is no arrow between $i$ and $j$ and $\left[S_{i},\left[S_{i}, S_{j}\right]\right]=0$ if there is exactly one arrow between $i$ and $j$.

Recently Saito described the elliptic Lie algebras in terms of generators and relations. Let $q$ be a nonnegative unit form and $\Phi:=q^{-1}(1)$ be a generalized root system. Saito has classified the root systems when corank of $q$ is 2 . There is a Lie algebra $\mathfrak{g}(\Phi)$ constructed by Bochards (as vertex algebra). In the "elliptic" case of corank 2 Saito has describe it also in terms of generators and relations. The generators are simple modules and relations are Serre relations together with some additional relations.

Consider the path algebra $A$ of the quiver

Then we have $\left[S_{1}, S_{3}\right](M)=S_{1} S_{3}(M)-S_{3} S_{1}(M)$. Note $S_{1} S_{3}(M) \neq 0$ implies $M$ has composition factors $S_{1}$ and $S_{3}$, hence $M=S_{1} \oplus S_{3}$ and $\left[S_{1}, S_{3}\right]=0$. Similarly, $\left[S_{2}, S_{3}\right](M)=S_{2} S_{3}(M)-S_{3} S_{2}(M)$. Thus we need to consider $M=S_{2} \oplus S_{3}$ and $M=P_{2}$, and we get $\left[S_{2}, S_{3}\right](M)=\delta_{M, P_{2}}$. Finally, $\left[S_{2},\left[S_{2}, S_{3}\right]\right](M)=0$ and we only have to consider $M=S_{2} \oplus P_{2}$.

Let $B$ be the path algebra of the following bound quiver


Then besides Serre relations we also have $\left[S_{1},\left[S_{2}, S_{3}\right]\right]=0$.
It is conjectured by the author that if $A$ is a tubular alebra, then the positive part $\mathfrak{g}^{+}(A)$ of Borchard's Lie algebra is isomorphic to $\mathscr{C}_{A}$.

