THE GABRIEL–ROITER FILTATIONS OF THE MODULES IN A HOMOGENEOUS TUBE

CLAUS MICHAEL RINGEL

Assumption.

Throughout the talk Λ we be an artin algebra.

NOTATION.

For a Λ -module M we denote by |M| its length.

DEFINITION.

Let M be Λ -module. A filtration

 $0 = M_0 \subset M_1 \subset \cdots \subset M_n$

is called an *M*-filtration, if $M_i/M_{i-1} \simeq M$ for each $i \in [1, n]$.

NOTATION.

For a Λ -module M we denote by $\mathscr{F}(M)$ the category of modules with M-filtrations.

DEFINITION.

A monomorphism $f: X \to Y$ with $X \neq 0$ is called mono-irreducible if f does not split and for each monomorphism $g: X \to Z$ and $h: Z \to Y$ such that f = hg either h is an isomorphism or g splits. We also call each map $0 \to Y$ mono-irreducible.

DEFINITION.

A filtration

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n$$

is called homogeneous if the inclusion $M_{i-1} \subset M_i$ is homogeneous for each $i \in [1, n]$.

NOTATION.

 $\mathfrak{P}_{\mathrm{fin}}(\mathbb{N}_+) := \{ I \subset \mathbb{N}_+ \mid I \text{ is finite} \}.$

DEFINITION.

Let $I, J \in \mathfrak{P}_{fin}(\mathbb{N}_+)$. Then I < J if $\min((I \setminus J) \cup (J \setminus I)) \in J$.

Remark.

Let $I, J \in \mathfrak{P}_{fin}(\mathbb{N}_+)$. Then I < J if and only if

$$\sum_{i\in I}\frac{1}{2^i} < \sum_{j\in J}\frac{1}{2^j}.$$

Date: 02.11.2007.

DEFINITION.

By a Gabriel–Roiter measure we mean a function $\mu : \mod \Lambda \to \mathfrak{P}_{fin}(\mathbb{N})$ defined for a Λ -module M by the condition that $\mu(M)$ is the maximum of the sets $\{l_1, \ldots, l_t\}$ such that there exists a filtration

$$M_1 \subset \cdots \subset M_t \subset M$$

with M_i indecomposable and $|M_i| = l_i$ for each $i \in [1, t]$.

DEFINITION.

If $\mu(M) = \{1, \ldots, l_t\}$ for a Λ -module M, then any filtration

 $M_1 \subset \cdots \subset M_t \subset M$

such that M_i is indecomposable and $|M_i| = l_i$ for each $i \in [1, t]$, is called a Gabriel-Roiter filtration.

DEFINITION.

Let $I, J \in \mathfrak{P}_{fin}(\mathbb{N}_+)$. We say J starts with I if $I = J \cap \{1, \dots, \max I\}$.

DEFINITION.

Let U be an indecomposable submodule of a Λ -module Y. We say that U is a "solid" submodule of Y provided $\mu(Y)$ starts with $\mu(U)$.

THEOREM.

Let M and Y be indecomposable modules such that Y possesses a homogeneous M-filtration consisting of indecomposable modules. If Uis a "solid" submodule of Y, then

- (1) there exists a submodule U' of M such that $U' \simeq U$, provided $|U| \leq |M|$,
- (2) any Gabriel–Roiter filtration of U contains a submodule isomorphic to M, provided $|U| \ge |M|$.

Proof.

Assume that $|U| \leq |M|$. Let

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = Y$$

be a homogeneous M-filtration of Y consisting of indecomposable modules. Without loss of generality we may assume that $U \not\subset M_{n-1}$. Since Y is indecomposable and $|U| \leq |M|$, $U + M_{n-1} \neq Y$. Consequently, $U + M_{n-1} = V \oplus M_{n-1}$ for some Λ -module V, since the inclusion $M_{n-1} \hookrightarrow M_n$ is mono-irreducible. Observe that V is isomorphic to a submodule of M. Since U is a "solid" submodule of Y, it is also a "solid" submodule of $U + M_{n-1} = V \oplus M_{n-1}$, and by the strong Gabriel–Roiter property, either U is a isomorphic to a "solid" submodule of V or U is isomorphic to a "solid" submodule M_{n-1} . However, the latter possibility cannot hold and we are done.

THEOREM.

Let M and Y be indecomposable modules such that $\operatorname{End}_{\Lambda}(M)$ is a

division ring, and \boldsymbol{Y} possesses a unique M--filtration

$$0 = M_0 \subset M_1 \subset \cdots \subset M_n = Y,$$

this filtration is *M*-homogeneous and consists of indecomposable modules. If *U* is a "solid" submodule of *Y* and $|U| \ge |M|$, then $U = M_i$ for some $i \in [1, n]$. In particular,

$$\mu(Y) = \mu(Y) \cup \{ |M_2|, \dots, |M_n| \}.$$