SOME ASPECTS OF DJAMENT'S PROOF OF THE ARTINIAN CONJECTURE ON LEVEL 3

BASED ON THE TALK BY ALEXANDER ZIMMERMANN

The talk is based on the papers Catégories de foncteurs en grassmanniennes et filtration de Krull and Le foncteur $V \mapsto \mathbb{F}_{2}[V]^{\otimes 3}$ entre \mathbb{F}_{2} espaces vectoriels est noethérien by Aurélien Djament.

Notation.
Let $k=\mathbb{F}_{2}$. By $\mathscr{F}=\mathscr{F}(k)$ we denote the category of functors $\bmod k \rightarrow$ $\operatorname{Mod} k$.

LEMMA.
\mathscr{F} is an abelian category with enough projective and injective.
Remark.
For $V \in \bmod k$, let P_{V} be the functor $k\left[\operatorname{Hom}_{k}(V,-)\right]$, where $k[X]$ denotes the vector space with basis X for a set X. Then $\operatorname{Hom}_{\mathscr{F}}\left(P_{V}, F\right) \simeq$ $F(V)$ for each $F \in \mathscr{F}$. It follows that P_{V} is a set of projective generators of \mathscr{F}.

Remark.
For $F \in \mathscr{F}$, let $(D F)(V)=\left(F\left(V^{*}\right)\right)^{*}$, where $(-)^{*}$ denotes the k-dual. It is known $\operatorname{Hom}_{\mathscr{F}}(F, D G)=\operatorname{Hom}_{\mathscr{F}}(G, D F)$, hence $I_{V}=D P_{V}$ is an injective object for each $V \in \bmod k$.

Definition.
We call a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ of $n \in \mathbb{N}$ 2-regular, if $\lambda_{1}>\cdots>$ $\lambda_{l}>0$.

Notation.

For a 2-regular partition λ we denote by W_{λ} the subfunctor of $\Lambda^{\lambda^{1}} \otimes$ $\cdots \otimes \Lambda^{\lambda_{l}}$ such that $W_{\lambda}(V)$ is the subspace of $\Lambda^{\lambda_{1}}(V) \otimes \cdots \otimes \Lambda^{\lambda_{l}}(V)$ generated by

$$
\left(u_{1} \wedge \cdots \wedge u_{\lambda_{1}}\right) \otimes \cdots \otimes\left(u_{1} \wedge \cdots \wedge u_{\lambda_{l}}\right), u_{1}, \ldots, u_{\lambda_{1}} \in V,
$$

for $V \in \bmod k$.

Theorem.

If λ is 2 -regular partition, then W_{λ} has a unique quotient S_{λ}. Moreover, S_{λ} 's are the simple objects in \mathscr{F}.

Conjecture (Aritinian Conjecture).

I_{V} is artinian for $V \in \bmod k$. Equivalently, P_{V} is noetherian for $V \in$ $\bmod k$.

Remark.
Kuhn proved in 1994 this conjecture for vector spaces of dimension 1. Powell proved in 1998 this conjecture for two-dimensional vector spaces. Finally, Djament showed that this conjecture for vector spaces of dimension 3. In the talk we describe the tools used in his proof.

Notation.

Let $\mathscr{E}_{\mathrm{gr}}$ be the category with objects (V, W) such that $V \in \bmod k$ and W is a subspace of V. If $(V, W),\left(V^{\prime}, W^{\prime}\right) \in \mathscr{E}_{\mathrm{gr}}$, then by a morphism we mean a linear map $f: V \rightarrow V^{\prime}$ such that $f(W)=W^{\prime}$. By $\mathscr{E}_{\mathrm{gr}, n}$ $\left(\mathscr{E}_{\mathrm{gr}, \leq n}\right)$ we denote the full subcategory with the objects (V, W) such that $\operatorname{dim}_{k} W=n\left(\operatorname{dim}_{k} W \leq n\right.$, respectively $)$. Moreover, $\mathscr{F}_{\mathrm{gr}}\left(\mathscr{F}_{\mathrm{gr}, n}\right.$, $\left.\mathscr{F}_{\mathrm{gr}, \leq n}\right)$ denotes the category of functors $\mathscr{E}_{\mathrm{gr}} \rightarrow \operatorname{Mod} k\left(\mathscr{E}_{\mathrm{gr}, n} \rightarrow \operatorname{Mod} k\right.$, $\mathscr{E}_{\mathrm{gr}, \leq n} \rightarrow \operatorname{Mod} k$, respectively).
Fix $n \in \mathbb{N}$. We have restriction functors $R_{n}: \mathscr{F}_{\mathrm{gr}} \rightarrow \mathscr{F}_{\mathrm{gr}, n}$ and $R_{\leq n}$: $\mathscr{F}_{\mathrm{gr}} \rightarrow \mathscr{F}_{\mathrm{gr}, \leq n}$. The Grassmann integral $\omega: \mathscr{F}_{\mathrm{gr}} \rightarrow \mathscr{F}$ is defined by $\omega(F)(V)=\bigoplus_{W \subset V} F(V, W)$. On the other hand, we have the functor $\iota: \mathscr{F} \rightarrow \mathscr{F}_{\text {gr }}$ given by $\iota(F)(V, W)=F(V)$. It follows that (ω, ι) is an adjoint pair. Finally, let $P_{n}: \mathscr{F}_{\mathrm{gr}, n} \rightarrow \mathscr{F}_{\mathrm{gr}}$ be defined by

$$
\left(\mathscr{P}_{n} F\right)(V, W)= \begin{cases}F(V, W) & (V, W) \in \mathscr{E}_{\mathrm{gr}, n}, \\ 0 & \text { otherwise }\end{cases}
$$

and $\omega_{n}=\omega \mathscr{P}_{n}$.

Definition.

For $L \in \bmod k$ we define $\Delta_{L}: \mathscr{F}_{\text {gr }} \rightarrow \mathscr{F}_{\text {gr }}$ by $\Delta_{L}(F)(V, W)=F(V \oplus$ $L, W)$. The assignment $L \mapsto \Delta_{L}$ is functorial and $\Delta_{k}=\operatorname{Id} \oplus \Delta$, since the exact sequence $0 \rightarrow k \rightarrow 0$ induces the sequence $\Delta_{0} \rightarrow \Delta_{k} \rightarrow \Delta_{0}$. We call Δ the difference. $F \in \mathscr{F}$ is called polynomial of degree d if $\Delta^{d+1}(F)=0$.

Proposition.

$\left(\Delta_{k},-\otimes_{k} P_{k}\right)$ are adjoint. Moreover, the finite composition length objects in $\mathscr{F}_{\mathrm{gr}, \leq n}$ and $\mathscr{F}_{\mathrm{gr}, n}$ are polynomial objects with image in $\bmod k$.
Definition.
We call the subcategory \mathscr{B} of an abelian category \mathscr{A} closed under short exact sequence if for each every short exact sequence $0 \rightarrow A_{1} \rightarrow A_{2} \rightarrow$ $A_{3} \rightarrow 0$ such that $A_{i}, A_{j} \in \mathscr{B}$ for $i \neq j, A_{1}, A_{2}, A_{3} \in \mathscr{B}$.

Notation

We denote by $\mathscr{F}^{\omega-\operatorname{cons}(n)}$ the smallest subcategory of \mathscr{F} closed under
short exact sequences and containing $\omega_{\leq n}(X)$ for all finite object X in $\mathscr{F}_{\mathrm{gr}, \leq n}$.

Definition.

We call the subcategory \mathscr{B} of an abelian category \mathscr{A} thick if for each every short exact sequence $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0, B \in \mathscr{B}$ if and only if $A, B \in \mathscr{B}$.

Proposition.

If $\mathscr{F}^{\omega-\operatorname{cons}(i)}$ is thick for each $i \in[1, n]$, then $P_{V} \otimes F$ is noetherian for each finite object F and V with $\operatorname{dim} V \leq n$.

Definition.

If $F \in \mathscr{F}$, then $-\otimes_{k} F: \mathscr{F} \rightarrow \mathscr{F}$ commutes with limits, hence possesses a left adjoint which we denote $(-: F)$ all call the division by F. It follows that $((-: F): G) \simeq((-: G): F)$.

Theorem.

Let $L(i)$ be the injective hull of $S_{i, i-1, \ldots, 1}$. If $F \in \mathscr{F}^{\omega-\operatorname{cons}(i-1)}$ for each F such that $(F: L(i))=0$ and $\mathscr{F}^{\omega-\operatorname{cons}(j)}$ is thick for each $j \in[1, i-1]$, then $\mathscr{F}^{\omega-\operatorname{cons}(j)}$ is thick for each $j \in[1, i]$.

