LOCALIZATION IN KRONECKER MODULI SPACES AND APPLICATIONS

BASED ON THE TALK BY THORSTEN WEIST

ASSUMPTION.

Throughout the talk $m \geq 3$ will be a fixed integer. We also denote by Δ the *m*-Kronecker quiver

$$\begin{array}{c}
\alpha_1 \\
\bullet \\
\vdots \\
\alpha_m
\end{array} \bullet 2$$

Finally, by μ we denote the slope function $\mu : \mathbb{Z}^2 \to \mathbb{R}, (d, e) \mapsto \frac{d}{d+e}$.

DEFINITION.

A representation X is called stable, if $\mu(Y) < \mu(X)$ for all proper nonzero subrepresentations Y of X.

Remark.

A representation X of dimension vector (d, e) is stable if and only if

$$\dim_k \left(\sum_{k=1}^m X_{\alpha_k}(U) \right) > \frac{e}{d} \dim_k U$$

for each proper nonzero subspace U of X_1 .

NOTATION.

If (d, e) = 1 for $d, e \in \mathbb{N}$, then we denote by $K_{d,e}^m$ the moduli space of stable representations of dimension vector (d, e).

NOTATION.

Let $T = (\mathbb{C}^*)^m$. If (d, e) = 1, $d, e \in \mathbb{N}$, then the action of T on the representation space by multiplication induces an action on $K_{d,e}^m$.

NOTATION.

We define the quiver $\hat{\Delta}$ by $\hat{\Delta}_0 := \Delta_0 \times \mathbb{Z}^m$ and

$$\hat{\Delta}_1 := \{ (\alpha_i, \chi) : (1, \chi) \to (2, \chi + \mathbf{e}_i) \mid i \in [1, m], \ \chi \in \mathbb{Z}^m \}.$$

 \mathbb{Z}^m acts $\hat{\Delta}$ by $\mu(i,\chi) = (i,\chi+\mu)$ and this induces an action on the dimension vectors.

Remark.

If $X \in (K_{d,e}^m)^T$, then there exist \mathbb{Z}^m -gradings in X_1 and X_2 such that

Date: 07.12.2007.

 $X_{\alpha_i}((X_1)_{\chi}) \subset (X_2)_{\chi+\mathbf{e}_i}$. Consequently, X determines the representation of $\hat{\Delta}$ of dimension vector $(\dim_k(X_1)_{\chi}, \dim_k(X_2)_{\chi})_{\chi \in \mathbb{Z}^m}$.

THEOREM (REINEKE).

If (d, e) = 1 for $d, e \in \mathbb{N}$, then $(K_{d,e}^m)^T$ is isomorphic to the disjoint union $\bigcup K_{\mathbf{d}}(\hat{\Delta})$, where **d** ranges all equivalence classes of dimension vectors such that $\sum_{\chi \in \mathbb{Z}^m} d_{1,\chi} = d$ and $\sum_{\chi \in \mathbb{Z}^m} d_{1,\chi} = e$. In particular,

$$\chi(K_{d,e}^m) = \sum \chi K_{\mathbf{d}}(\hat{\Delta}).$$

THEOREM.

If (d, e) = 1 for $d, e \in \mathbb{N}$, then there exists unique $d_s \in [0, d]$, $e_s \in [0, e]$, and $C_{d,e} > 0$, such that $(d_s, e_s) = 1$ and

$$\chi(K^m_{d_e+nd,e_s+ne}) \ge \exp(C_{d,e}nd)$$

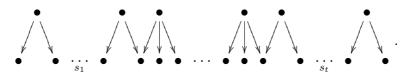
for $n \gg 0$.

ASSUMPTION.

We assume that m = 3. Moreover, since $K_{d,e}^m \simeq K_{e,d}^m$ and $K_{d,e}^m \simeq K_{e,m-d}^m$, we may assume that d < e < 2e.

DEFINITION.

If $s = (s_1, \ldots, s_t) \in \mathbb{N}^t$, then we denote by $\Delta(s)$ the quiver with



We will often identify s with $\Delta(s)$. We say that s is compatible with (d, e) if $s_1 + \cdots + s_t + t - 1 = d$ and $s_1 + \cdots + s_t + 2t - 2 = e$. s is called stable if there exists a stable representation of $\Delta(s)$ of dimension vector (1). If s is stable, then there exists $l \in \mathbb{N}_+$ such that s is of simple type l, i.e. $s_i \in \{l-1, l\}$ for all $i \in [1, t]$. Finally, $\hat{s} = (s_1 - 1, s_2, \dots, s_t)$.

DEFINITION.

If $l \in \mathbb{N}_+$, then we define function η_n^l and θ_n^l between the set of quivers of simple type l, by

$$\begin{split} \eta_n^l(l-1) &= (l-1, l^{n-1}), & \eta_n^l(l) = (l-1, l^n), \\ \theta_n^l(l-1) &= ((l-1)^{n+1}, l), & \theta_n^l(l) = ((l-1)^n, l). \end{split}$$

One can show, that if s is stable of simple type l, then $\theta_n^l(\hat{s})$ and $\eta_n^l(\hat{s})$ are stable of simple type l.

LEMMA.

Let $d, e \in \mathbb{N}$, (d, e) = 1.

(1) There exists (up to coloring) a unique stable quiver $s_{d,e}$ of simple type (d, e).

- (2) If d_s is minimal such that d | 1 + d_se and e_s = (1 + d_se)/d, then s_{d_s+nd,e_s+ne} = (s_{d_s,e_s}, (ŝ_{d,e})ⁿ).
 (3) There exists a unique sequence (l₁,..., l_n) such that

$$\hat{s}_{d,e} = \eta_{l_2}^{l_1} \circ \dots \circ \eta_{l_{n-1}}^{l_1} \circ \theta_{l_n}^{l_1}(l_1)$$

or

$$\hat{s}_{d,e} = \eta_{l_2}^{l_1} \circ \cdots \circ \eta_{l_{n-1}}^{l_1} \circ \eta_{l_n}^{l_1}(l_1).$$