AUSLANDER ALGEBRAS

BASED ON THE TALK BY LINGLING YAO

The talk was based on Section VI.5 of *Representation Theory of Artin Algebras* by Auslander, Reiten and Smalø.

DEFINITION.

Let Σ be an Artin algebra. The dominant dimension dom. dim_{Σ} A of a Σ -module A is the supremum of the set of $t \in \mathbb{N}$ such that I_0, \ldots, I_{t-1} are projective for a minimal injective resolution

$$0 \to A \to I_0 \to I_1 \to \cdots$$

of A.

DEFINITION.

An artin algebra Γ is called an Auslander algebra if gl. dim $\Gamma \leq 2$ and dom. dim_{Γ} $\Gamma \geq 2$.

DEFINITION.

Let Λ be an artin algebra and let \mathscr{C} be the full subcategory of mod Λ . A Λ -module M is called an additive generator of \mathscr{C} if add $M = \mathscr{C}$.

Remark.

There exists an additive generator of $\text{mod } \Lambda$ for an artin algebra Λ if and only if Λ is of finite representation type.

NOTATION.

If M is a module over an artin algebra Λ , then $\Gamma_M := \operatorname{End}_{\Lambda}(M)^{\operatorname{op}}$.

Remark.

If M is a module over an artin algebra Λ , then $\operatorname{Hom}_{\Lambda}(M, -)$ induces an equivalence between add M and the category of projective Γ_M -modules.

REMARK.

If M and N are modules over an artin algebra Λ such that add M = add N, then Γ_M and Γ_N are Morita equivalent.

LEMMA.

Let M be an additive generator of mod Λ for an artin algebra Λ .

(1) If P₁ ^g→ P₀ → X → 0 is a projective presentation of X ∈ mod Γ_M, then there exists an exact sequence 0 → A₂ → A₁ ^h→ A₀ of Λ-modules such that g = Hom_Λ(M, h).
(2) gl. dim Γ_M ≤ 2.

Date: 11.01.2008.

PROPOSITION.

Let M be an additive generator of mod Λ for an artin algebra Λ .

- (1) If Λ is semisimple, then Λ and Γ_M are Morita equivalent.
- (2) If Λ is not semisimple, then gl. dim $\Gamma_M = 2$.

LEMMA.

Let M be an additive generator of mod Λ for an artin algebra Λ .

- (1) If I is an injective Λ -module, then $\operatorname{Hom}_{\Lambda}(M, I)$ is an injective Γ_M -module.
- (2) If $0 \to A \to I_0 \to I_1$ is a minimal injective resolution of a Λ -module A, then

 $0 \to \operatorname{Hom}_{\Lambda}(M, A) \to \operatorname{Hom}_{\Lambda}(M, I_0) \to \operatorname{Hom}_{\Lambda}(M, I_1)$

is a minimal injective resolution of $\operatorname{Hom}_{\Lambda}(M, A)$.

- (3) A Γ_M -module N is projective-injective if and only if there exists an injective Λ -module I such that $N \simeq \operatorname{Hom}_{\Lambda}(M, I)$.
- (4) $\operatorname{Hom}_{\Lambda}(M, -)$ induces an equivalence between the category of injective Λ -modules and the category of projective-injective Γ_{M} -modules.

PROPOSITION.

Let M be an additive generator of mod Λ for an artin algebra Λ which is not semisimple.

(1) gl. dim $\Gamma_M = 2 = \text{dom. dim}_{\Gamma_M} \Gamma_M$. (2) $\Lambda \simeq \text{End}_{\Gamma_M} (D(M))^{\text{op}}$.

Remark.

If M is an additive generator of mod Λ for an artin algebra Λ , then D(M) and $\operatorname{Hom}_{\Lambda}(M, D(\Lambda))$ are isomorphic Γ_M -modules.

LEMMA.

Let Σ be an artin algebra.

- (1) If $\operatorname{pd}_{\Sigma} A = n < \infty$ for a Σ -module A, then $\operatorname{Ext}_{\Sigma}^{n}(A, \Sigma) \neq 0$.
- (2) Suppose gl. dim $\Sigma = n < \infty$.
 - (a) $\operatorname{id}_{\Sigma} \Sigma = n$.
 - (b) If

$$0 \to \Sigma \to I_0 \to \dots \to I_n \to 0$$

is a minimal injective resolution of Σ , then $\bigoplus_{i \in [0,n]} I_i$ is an additive generator for the category of injective Λ -modules.

PROPOSITION.

Let Q be an additive generator for the category of projective-injective Σ -modules for an artin algebra Σ such that gl. dim $\Sigma = 2 = \text{dom. dim } \Sigma$, and $\Lambda := \text{End}_{\Sigma}(Q)^{\text{op}}$.

(1) Λ is of finite representation type but not semisimple.

(2)
$$\Sigma \simeq \operatorname{End}_{\Lambda}(D(Q))^{\operatorname{op}}$$
.

THEOREM.

Let

 $\mathscr{X} := \{ (\Lambda, M) \mid \Lambda \text{ is representation finite, but not semisimple} \\ \text{ and } M \text{ is an additive generator of mod } \Lambda \},$

and

 $\mathscr{Y} := \{(\Gamma, Q) \mid \Gamma \text{ is not semisimple Auslander algebra}$ and Q is an additive generator of the category of projective-injective Γ -modules}.

Then

$$\mathscr{X} \ni (\Lambda, M) \mapsto (\operatorname{End}_{\Lambda}(M)^{\operatorname{op}}, D(M)) \in \mathscr{Y}$$

and

$$\mathscr{Y} \ni (\Gamma, Q) \mapsto (\operatorname{End}_{\Gamma}(Q)^{\operatorname{op}}, D(Q)) \in \mathscr{X}$$

are mutually inverse bijections (modulo isomorphism).