REPRESENTATION DIMENSION

BASED ON THE TALK BY DAIVA PUCINSKAITE

NOTATION.

If M is a module over an artin algebra Λ , then by I(M) we denote the injective envelope of M.

NOTATION.

For an artin algebra Λ we define

$$\mathscr{A}(\Lambda) := \{ \Gamma \mid \Gamma \text{ is an artin algebra, dom. dim } \Gamma \geq 2, \end{cases}$$

 Λ is Morita equivalent to $\operatorname{End}_{\Gamma}(I(\Gamma))^{\operatorname{op}}$.

Remark.

If Λ is an artin algebra, then

$$\mathscr{A}(\Lambda) = \{ \operatorname{End}_{\Lambda}(N)^{\operatorname{op}} \mid N \text{ is a generator-cogenerator of } \operatorname{mod} \Lambda \}.$$

DEFINITION.

If Λ is an artin algebra, then the representation dimension rep. dim Λ of Λ is defined by:

rep. dim
$$\Lambda := \begin{cases} 1 & \Lambda \text{ is semisimple,} \\ \min\{\text{gl. dim } \Gamma \mid \Gamma \in \mathscr{A}(\Lambda)\} & \text{otherwise.} \end{cases}$$

LEMMA.

If Λ is an artin algebra which is not semisimple, then rep. dim $\Lambda \geq 2$.

Proof.

Assume that rep. dim $\Lambda \leq 1$ and choose $\Gamma \in \mathscr{A}(\Lambda)$ such that gl. dim $\Gamma \leq 1$. If $0 \to \Gamma \to I_0 \xrightarrow{f} I_1$ is a minimal injective resolution of Γ , then f is surjective, since gl. dim $\Gamma \leq 1$. Moreover, I_1 is projective, since dom. dim $\Gamma \geq 2$. Consequently, f splits and Γ is selfinjective. In particular, $I(\Gamma) = \Gamma$. Additionally, Γ is hereditary and selfinjective artin algebra, hence semisimple. But Λ is Morita equivalent to $\operatorname{End}_{\Gamma}(\Gamma)^{\operatorname{op}} \simeq \Gamma$, thus semisimple, contradiction.

PROPOSITION.

Let Λ be an artin algebra.

- (1) rep. dim $\Lambda = 1$ if and only if Λ is semisimple.
- (2) rep. dim $\Lambda = 2$ if and only if Λ is representation-finite but not semisimple.

Date: 11.01.2008.

Proof.

- (1) Follows from the definition and the above lemma.
- (2) It follows from the theorem of Auslander stating the following:
- If M is an additive generator of mod Λ for a representation-finite artin algebra Λ and $\Gamma := \operatorname{End}_{\Lambda}(M)^{\operatorname{op}}$, then gl. dim $\Gamma \leq 2$ and dom. dim $\Gamma \geq 2$.
- If Γ is an artin algebra such that gl. dim $\Gamma \leq 2$ and dom. dim $\Gamma \geq 2$, then $\operatorname{End}_{\Gamma}(I(\Gamma))^{\operatorname{op}}$ is representation-finite.

LEMMA.

Let V be a module over an artin algebra Λ and $\Gamma := \operatorname{End}_{\Lambda}(V)$. If for each Λ -module M there exists an exact sequence $0 \to V_1 \to V_2 \to M \to 0$ with $V_1, V_2 \in \operatorname{add} V$, such that the sequence

$$0 \to \operatorname{Hom}_{\Lambda}(-, V_1) \to \operatorname{Hom}_{\Lambda}(-, V_2) \to \operatorname{Hom}_{\Lambda}(-, M) \to 0$$

is exact, then gl. dim $\Gamma \leq 3$.

Proof.

Let \mathscr{V} be the category of contravariant coherent functors from add Vto the category Ab of abelian groups, i.e. the category of the functors of the form Coker Hom_{Λ}(-, f), where f is a morphism in add V. It is known that \mathscr{V} is equivalent to mod Γ and the projective objects in \mathscr{V} are representable functors, i.e. $F \in \mathscr{V}$ is projective in \mathscr{V} if and only if there exists $V' \in \text{add } V$ such that $F \simeq \text{Hom}_{\Lambda}(-, V')$. Thus in order to show that gl. dim $\Gamma \leq 3$, it is enough to prove that for each $F \in \mathscr{V}$ there exists an exact sequence

$$0 \to V_1 \to V_2 \to V_3 \to V_4$$

with $V_1, V_2, V_3, V_4 \in \text{add } V$, such that the sequence

$$0 \to \operatorname{Hom}_{\Lambda}(-, V_1) \to \operatorname{Hom}_{\Lambda}(-, V_2) \to \operatorname{Hom}_{\Lambda}(-, V_3)$$
$$\to \operatorname{Hom}_{\Lambda}(-, V_4) \to F \to 0$$

is exact. However, if $F \in \mathcal{V}$, then there exists $f : V_2 \to V_3$ with $V_2, V_3 \in \operatorname{add} V$ such that $F \simeq \operatorname{Coker}(-, f)$, hence it is enough to apply the condition from the lemma for Ker f.

PROPOSITION.

Let Λ be an artin algebra and $n \in \mathbb{N}$. If rep. dim $\Lambda/\mathfrak{r}_{\Lambda}^{n-1} \leq 2$, then rep. dim $\Lambda/\mathfrak{r}_{\Lambda}^n \leq 3$.

Proof.

Without loss of generality we may assume that $\mathfrak{r}_{\Lambda}^{n} = 0$, i.e. $\Lambda/\mathfrak{r}_{\Lambda}^{n} \simeq \Lambda$. Since rep. dim $\Lambda/\mathfrak{r}_{\Lambda}^{n-1} \leq 2$, there exists an additive generator N of the full subcategory of mod Λ formed by $M \in \text{mod }\Lambda$ such that $\mathfrak{r}_{\Lambda}^{n-1}M = 0$. Let $V := N \oplus \Lambda \oplus D(\Lambda)$ and $\Gamma := \text{End}_{\Lambda}(V)^{\text{op}}$. We show that gl. dim $\Gamma \leq 3$ using the previous lemma, i.e. we prove that for each A-module M there exists an exact sequence $0 \to V_1 \to V_2 \to M \to 0$ with $V_1, V_2 \in \text{add } V$, such that the sequence

$$0 \to \operatorname{Hom}_{\Lambda}(-, V_1) \to \operatorname{Hom}_{\Lambda}(-, V_2) \to \operatorname{Hom}_{\Lambda}(-, M) \to 0$$

is exact

Take $M \in \text{mod }\Lambda$. Obviously, we may assume that M is indecomposable. If $M \in \text{add }V$, then the claim is obvious, thus assume that $M \notin \text{add }V$. Let $M' := \{m \in M \mid \mathfrak{r}_{\Lambda}^{n-1}m = 0\}$ and let $g : P \to M/M'$ be the projective cover of M/M'. There exists $h : P \to M$ such that g = ph, where $p : M \to M/M'$ is the canonical projection. Let $f := [h, i] : P \oplus M' \to M$, where $i : M' \to M$ is the canonical embedding. Observe that f is surjective. Moreover, if K := Ker f, then

$$K \simeq \{ p \in P \mid h(p) \in M' \} \subset \mathfrak{r}_{\Lambda} P \in \operatorname{add} V,$$

thus it remains to prove that $\operatorname{Hom}_{\Lambda}(X, f)$ is surjective for each $X \in \operatorname{add} V$. We may again assume that X is indecomposable.

Obviously, $\operatorname{Hom}_{\Lambda}(X, f)$ is surjective if X is projective. Moreover, if $\mathfrak{r}_{\Lambda}^{n-1}X = 0$, then $\operatorname{Hom}_{\Lambda}(X, i)$ is an isomorphism, hence $\operatorname{Hom}_{\Lambda}(X, f)$ is surjective. Thus assume that X is injective and $\mathfrak{r}_{\Lambda}^{n-1}X \neq 0$. Let S be the socle of X. Then S is simple and $\mathfrak{r}_{\Lambda}^{n-1}(X/S) = 0$. In particular, $\operatorname{Hom}_{\Lambda}(X/S, i)$ is an isomorphism. Let $q : X \to X/S$ be the canonical projection. Since M is indecomposable and not injective, φ cannot be injective for $\varphi \in \operatorname{Hom}_{\Lambda}(X, M)$. Since S is simple, this implies that $\operatorname{Hom}_{\Lambda}(q, M)$ is an isomorphism. Similarly one shows that $\operatorname{Hom}_{\Lambda}(q, M')$ is an isomorphism. Similarly one shows that $\operatorname{Hom}_{\Lambda}(q, M')$

 $\operatorname{Hom}_{\Lambda}(X, i) \operatorname{Hom}_{\Lambda}(q, M') = \operatorname{Hom}_{\Lambda}(q, M) \operatorname{Hom}_{\Lambda}(X/S, i),$

hence $\operatorname{Hom}_{\Lambda}(X, i)$ is also an isomorphism, thus the claim follows.

COROLLARY.

If $\mathbf{r}_{\Lambda}^2 = 0$ for an artin algebra Λ , then rep. dim $\Lambda \leq 3$.

PROPOSITION.

If gl. dim $\Lambda \leq 1$ for an artin algebra Λ , then rep. dim $\Lambda \leq 3$.

Proof.

Let $V := \Lambda \oplus D(\Lambda)$ and $\Gamma := \operatorname{End}_{\Lambda}(V)^{\operatorname{op}}$. We again prove that gl. dim $\Gamma \leq 3$ using the above lemma. Let M be an indecomposable Λ -module. We may assume that M is not injective. This implies that M has no nonzero injective submodules. Let $f : P \to M$ be the projective cover of M. Since gl. dim $\Lambda \leq 1$, Ker f is projective. Moreover, $\operatorname{Hom}_{\Lambda}(Q, f)$ is surjective for each projective Λ -module Q. Finally, if I is injective, then $\operatorname{Hom}_{\Lambda}(I, M) = 0$, since M has no nonzero injective submodules and the image of a map from an injective module is injective over hereditary algebras, and this finished the proof.