REPRESENTATION DIMENSION AND RADICALS

BASED ON THE TALK BY TIMO ROSNAU

The talk was based on the paper On the representation dimension of finite dimensional algebras by Changchang Xi.

Definition.

Let V and M be modules over a finite dimensional algebra A. A homomorphism $f: X \rightarrow M$ is called a right add V-approximation of M if $X \in \operatorname{add} Y$ and $\operatorname{Hom}_{A}(Y, f)$ is surjective for each $Y \in \operatorname{add} V$.

Lemma.
If V and M are modules over a finite dimensional algebra A, then there exists a right add V-approximation of M. Moreover, if $A \in \operatorname{add} V$, then each right add V-approximation is surjective.

Lemma (Auslander).
Let V be a generator-cogenerator of $\bmod A$ for a finite dimension algebra A and $m \in \mathbb{N}_{+}$. Then gl. $\operatorname{dim} \operatorname{End}_{A}(V)^{\text {op }} \leq m+2$ if and only if for each indecomposable A-module M there exists an exact sequence

$$
0 \rightarrow X_{0} \rightarrow \cdots \rightarrow X_{m} \rightarrow M \rightarrow 0
$$

such that $X_{0}, \ldots, X_{m} \in$ add V and the sequence

$$
0 \rightarrow \operatorname{Hom}_{A}\left(X, X_{0}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{A}\left(X, X_{m}\right) \rightarrow \operatorname{Hom}_{A}(X, M) \rightarrow 0
$$

is exact for each $X \in$ add V.

Theorem.

Let A be a finite dimensional algebra, $n \in \mathbb{N}$ be such that $\mathfrak{r}_{\Lambda}^{n}=0$, and $B:=A / \mathfrak{r}_{\Lambda}^{n-1}$. If $I / \mathfrak{r}_{\Lambda}^{n-1} I \in \operatorname{add}(B \oplus D B)$ for each injective A-module I, then

$$
\text { rep. } \operatorname{dim} A \leq \max (3, \text { rep. } \operatorname{dim} B+1)
$$

Assumptions.
Let $m=$ rep. $\operatorname{dim} B$. It is known that $m<\infty$. If $m \leq 2$, then the result is known, thus we may assume $m \geq 3$. Choose a generator-cogenerator U of $\bmod B$ such that gl. $\operatorname{dim} \operatorname{End}_{B}(U)^{\text {op }}=m$. Let $V:=A \oplus D A \oplus U$.
Lemma.
Let $I \in \operatorname{add} D A$ and M be an indecomposable A-module. If either $M \in \bmod B$ or $M \notin \operatorname{add} D A$, then $\operatorname{Hom}_{A}\left(p_{I}, M\right)$ is an isomorphism, where $p_{I}: I \rightarrow I / \mathfrak{r}_{\Lambda}^{n-1} I$ is the canonical projection.

Proof.
If $\mathfrak{r}_{\Lambda}^{n-1} I=0$, then the claim is obvious, thus assume $\mathfrak{r}_{\Lambda}^{n-1} I \neq 0$. Then $\mathfrak{r}_{\wedge}^{n-1} I=\operatorname{soc} I$ is simple. Moreover, our assumptions imply there are no monomorphism $I \rightarrow M$, hence $\mathfrak{r}_{\Lambda}^{n-1} I$ is contained in the kernel of every homomorphism $I \rightarrow M$, hence the claim follows.

Lemma.
If M is an indecomposable B-module, then there exists there exists an exact sequence

$$
0 \rightarrow X_{0} \rightarrow \cdots \rightarrow X_{m-2} \rightarrow M \rightarrow 0
$$

such that $X_{0}, \ldots, X_{m-2} \in \operatorname{add} U$ and the sequence

$$
0 \rightarrow \operatorname{Hom}_{A}\left(X, X_{0}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{A}\left(X, X_{m-2}\right) \rightarrow \operatorname{Hom}_{A}(X, M) \rightarrow 0
$$

is exact for each $X \in \operatorname{add} V$.

Proof.

By Auslander's Lemma there exists a sequence

$$
0 \rightarrow X_{0} \rightarrow \cdots \rightarrow X_{m-2} \rightarrow M \rightarrow 0
$$

such that $X_{0}, \ldots, X_{m-2} \in \operatorname{add} U$ and the sequence

$$
0 \rightarrow \operatorname{Hom}_{A}\left(X, X_{0}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{A}\left(X, X_{m-2}\right) \rightarrow \operatorname{Hom}_{A}(X, M) \rightarrow 0
$$

is exact for each $X \in \operatorname{add} U$. It remains to show that the above sequence is exact for each $X \in$ add V. We may obviously assume that X is indecomposable. If either $X \in \operatorname{add} U$ or $X \in \operatorname{add} A$, then the claim is clear. Thus assume that $X \in \operatorname{add} D A$. The previous lemma implies that it is enough to show that the sequence

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Hom}_{A}\left(X / \mathfrak{r}_{\Lambda}^{n} X, X_{0}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{A}\left(X / \mathfrak{r}_{\Lambda}^{n} X, X_{m-2}\right) \\
& \rightarrow \operatorname{Hom}_{A}\left(X / \mathfrak{r}_{\Lambda}^{n} X, M\right) \rightarrow 0
\end{aligned}
$$

is exact. However, this follows since $X / \mathfrak{r}_{\Lambda}^{n} X \in \operatorname{add}(B \oplus D B) \subset \operatorname{add} U$.
Proof (of Theorem).
We show that gl. $\operatorname{dim} \operatorname{End}_{A}(V)^{\mathrm{op}} \leq m+1$ using Auslander's Lemma, i.e. for each indecomposable A-module M we construct an exact sequence

$$
0 \rightarrow X_{0} \rightarrow \cdots \rightarrow X_{m-1} \rightarrow M \rightarrow 0
$$

such that $X_{0}, \ldots, X_{m-1} \in$ add V and the sequence

$$
0 \rightarrow \operatorname{Hom}_{A}\left(X, X_{0}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{A}\left(X, X_{m-1}\right) \rightarrow \operatorname{Hom}_{A}(X, M) \rightarrow 0
$$

is exact for each $X \in$ add V. Obviosuly, we may assume that $M \notin$ add V. Let $M^{\prime}:=\left\{m \in M \mid \mathfrak{r}_{\Lambda}^{n-1} m=0\right\}$. Observe that $M^{\prime} \in \bmod B$. Let $l: X_{m} \rightarrow M^{\prime}$ be a right add U-approximation of $M^{\prime}, g: P \rightarrow M / M^{\prime}$ be the A-projective cover of $M / M^{\prime}, h: P \rightarrow M$ be a lift of g, and $f:=[i l, h]: X_{m} \oplus P \rightarrow M$, where $i: M^{\prime} \rightarrow M$ is the canonical injection. One easily checks that f is surjective and $\operatorname{Ker} f \in \bmod B$. Thus it follows from the above lemma that in order to finish the proof
it suffices to show that $\operatorname{Hom}_{A}(X, f)$ is surjective for each $X \in \operatorname{add} V$. This is clear for $X \in \operatorname{add} A$. On the other hand, if $X \in \operatorname{add} U$, then $\operatorname{Hom}_{A}(X, i l)$ is surjective, since $\operatorname{Hom}_{A}(X, i)$ is an isomorphism, thus the claim also follows in this case. It remains to consider the case $X \in \operatorname{add} D A$. Again, it suffices to show that $\operatorname{Hom}_{A}(X, i l)$ is surjective. Since $X_{m} \in \bmod B$ and M is indecomposable and not in add $D A$, this is equivalent to surjectivity of $\operatorname{Hom}_{A}\left(X / \mathfrak{r}_{\Lambda}^{n-1} X, i l\right)$, which follows, since $X / \mathfrak{r}_{\Lambda}^{n-1} X \in \operatorname{add}(B \oplus D B) \subset \operatorname{add} U$.

