REPRESENTATION DIMENSION AND GLOBAL DIMENSION

BASED ON THE TALK BY NILS MAHRT

The talk was based on the paper On the representation dimension of finite dimensional algebras by Changchang Xi.

Theorem.

Let A be a finite dimensional algebra. If $\operatorname{Fac}(D A)$ is of finite representation type and $\operatorname{Hom}_{A}(X, Y)=0$ for all indecomposable A-modules X and Y such that $X \in \operatorname{Fac}(D A)$ and $Y \notin \operatorname{Fac}(D A)$, then rep. $\operatorname{dim} A \leq$ gl. $\operatorname{dim} A+2$.
Proof.
Choose an A-module N such that add $N=\operatorname{Fac}(D A)$. Let $V:=A \oplus N$. We may assume that gl. $\operatorname{dim} A<\infty$. According to Auslander's lemma it is enough to show that for each indecomposable A-module M there exists an exact sequence

$$
0 \rightarrow X_{0} \rightarrow \cdots \rightarrow X_{n} \rightarrow M \rightarrow 0
$$

such that $X_{0}, \ldots, X_{n} \in \operatorname{add} V$ and the sequence

$$
0 \rightarrow \operatorname{Hom}_{A}\left(X, X_{0}\right) \rightarrow \cdots \rightarrow \operatorname{Hom}_{A}\left(X, X_{n}\right) \rightarrow \operatorname{Hom}_{A}(X, M) \rightarrow 0
$$

is exact for each $X \in \operatorname{add} V$, where $n:=\operatorname{pd}_{A} M$. If $M \in$ add V, then the claim is obvious, thus we may assume that $M \notin \operatorname{add} V$. Let $f: P \rightarrow$ M be the projective cover of M. Since $\operatorname{pd}_{A} \operatorname{Ker} f=n-1$ (or Ker $f=0$ if $n=0$), it remains to prove that $\operatorname{Hom}_{A}(X, f)$ is surjective for each indecomposable $X \in \operatorname{add} V$. This is obvious is $X \in \operatorname{add} D A$. Moreover, if $X \in \operatorname{Fac} D A$, then $\operatorname{Hom}_{A}(X, M)=0$ and the claim follows.

Corollary.

If A is an hereditary finite dimensional algebra, then rep. $\operatorname{dim} A \leq 3$.

Corollary.

If A is a tame concealed algebra, then rep. $\operatorname{dim} A \in\{3,4\}$.
Remark (Ringel).
One may show that if $\operatorname{Fac}(D A)$ is of finite representation type for a finite dimensional algebra A, then rep. $\operatorname{dim} A \leq 3$. This implies that if A is tame concealed, then rep. $\operatorname{dim} A=3$.

Lemma.

Let A be a finite dimensional algebra. If N is an A - A-bimodule and $B:=\left[\begin{array}{cc}A & N \\ 0 & A\end{array}\right]$, then $\mathrm{gl} . \operatorname{dim} B \leq \operatorname{gl} . \operatorname{dim} A+\operatorname{pd}_{A} N+1$.

Proof.
Let $I:=\left[\begin{array}{cc}0 & N \\ 0 & A\end{array}\right]$ and $J:=\left[\begin{array}{cc}A & N \\ 0 & 0\end{array}\right]$. Observe that I and J are ideals in B and $I J=0$. In particular, if $M \in \bmod B$, then $J M$ is an B / I module. Since $B / I \simeq A$ and B / I is a projective B-module, it follows that $\operatorname{pd}_{B}(J M) \leq \operatorname{gl} . \operatorname{dim} A$. On the other hand, $M / J M$ is a B / J module. Again $B / J \simeq A$. Moreover, we have a short exact sequence $0 \rightarrow N \rightarrow I \rightarrow B / J$, hence $\operatorname{pd}_{B}(B / J) \leq \operatorname{pd}_{B} N+1$, since I is a projective B-module. Using that $\operatorname{pd}_{B} N \leq \operatorname{pd}_{A} N$, we obtain our claim.

Proposition.
If A is a finite dimensional algebra and $\operatorname{Hom}_{A}(D A, A)=0$, then rep. $\operatorname{dim} A \leq 1+2 \mathrm{gl} . \operatorname{dim} A$.

Proof.

We take $V:=A \oplus D A$ and use the above lemma.

