REPRESENTATION DIMENSION AND GLOBAL DIMENSION

BASED ON THE TALK BY NILS MAHRT

The talk was based on the paper On the representation dimension of finite dimensional algebras by Changchang Xi.

THEOREM.

Let A be a finite dimensional algebra. If $\operatorname{Fac}(DA)$ is of finite representation type and $\operatorname{Hom}_A(X, Y) = 0$ for all indecomposable A-modules X and Y such that $X \in \operatorname{Fac}(DA)$ and $Y \notin \operatorname{Fac}(DA)$, then rep. dim $A \leq$ gl. dim A + 2.

Proof.

Choose an A-module N such that add $N = \operatorname{Fac}(DA)$. Let $V := A \oplus N$. We may assume that gl. dim $A < \infty$. According to Auslander's lemma it is enough to show that for each indecomposable A-module M there exists an exact sequence

$$0 \to X_0 \to \cdots \to X_n \to M \to 0$$

such that $X_0, \ldots, X_n \in \text{add } V$ and the sequence

$$0 \to \operatorname{Hom}_A(X, X_0) \to \cdots \to \operatorname{Hom}_A(X, X_n) \to \operatorname{Hom}_A(X, M) \to 0$$

is exact for each $X \in \text{add } V$, where $n := \text{pd}_A M$. If $M \in \text{add } V$, then the claim is obvious, thus we may assume that $M \notin \text{add } V$. Let $f : P \to M$ be the projective cover of M. Since $\text{pd}_A \text{ Ker } f = n-1$ (or Ker f = 0if n = 0), it remains to prove that $\text{Hom}_A(X, f)$ is surjective for each indecomposable $X \in \text{add } V$. This is obvious is $X \in \text{add } DA$. Moreover, if $X \in \text{Fac } DA$, then $\text{Hom}_A(X, M) = 0$ and the claim follows.

COROLLARY.

If A is an hereditary finite dimensional algebra, then rep. dim $A \leq 3$.

COROLLARY.

If A is a tame concealed algebra, then rep. dim $A \in \{3, 4\}$.

Remark (Ringel).

One may show that if Fac(DA) is of finite representation type for a finite dimensional algebra A, then rep. dim $A \leq 3$. This implies that if A is tame concealed, then rep. dim A = 3.

Date: 18.01.2008.

LEMMA.

Let A be a finite dimensional algebra. If N is an A-A-bimodule and $B := \begin{bmatrix} A & N \\ 0 & A \end{bmatrix}$, then gl. dim $B \leq$ gl. dim $A + pd_A N + 1$.

Proof.

Let $I := \begin{bmatrix} 0 & N \\ 0 & A \end{bmatrix}$ and $J := \begin{bmatrix} A & N \\ 0 & 0 \end{bmatrix}$. Observe that I and J are ideals in B and IJ = 0. In particular, if $M \in \text{mod } B$, then JM is an B/I-module. Since $B/I \simeq A$ and B/I is a projective B-module, it follows that $\text{pd}_B(JM) \leq \text{gl.dim } A$. On the other hand, M/JM is a B/J-module. Again $B/J \simeq A$. Moreover, we have a short exact sequence $0 \rightarrow N \rightarrow I \rightarrow B/J$, hence $\text{pd}_B(B/J) \leq \text{pd}_B N + 1$, since I is a projective B-module. Using that $\text{pd}_B N \leq \text{pd}_A N$, we obtain our claim.

PROPOSITION.

If A is a finite dimensional algebra and $\operatorname{Hom}_A(DA, A) = 0$, then rep. dim $A \leq 1 + 2$ gl. dim A.

Proof.

We take $V := A \oplus DA$ and use the above lemma.