FINITENESS OF REPRESENTATION DIMENSION

BASED ON THE TALK BY ANDRE BEINEKE

The talk was based on the paper *Finiteness of representation dimension* by Osamu Iyama.

DEFINITION.

An ideal I in an artin algebra Λ is called a heredity ideal if $I^2 = I$, $I \cdot \operatorname{rad} \Lambda \cdot I = 0$ and I is a projective Λ -module.

DEFINITION.

A chain

$$0 = I_r \subset I_{r-1} \subset \cdots \subset I_1 \subset I_0 = I$$

of ideals of an artin algebra Λ is called a heredity chain if I_{i-1}/I_i is a heredity ideal in Λ/I_i for each $i \in [1, r]$.

DEFINITION.

An artin algebra Λ is called quasi-hereditary if it possesses a heredity chain of ideals.

NOTATION.

If X is a module over an artin algebra Λ , then

$$X' := \{ f(x) \mid f \in \operatorname{rad}_{\Lambda}(X, X), \ x \in X \}.$$

NOTATION.

For a module M over an artin algebra Λ we define a chain

 $M_0 \supset M_1 \supset M_2 \supset \cdots$

of submodules of M as follows: $M_0 := M, M_i := M'_{i-1}$ for $i \in \mathbb{N}_+$.

NOTATION.

For modules M and N over an artin algebra Λ we put

$$\eta_M N := \sum_{f \in \operatorname{Hom}_{\Lambda}(M,N)} \operatorname{Im} f.$$

Remark.

If M and N are modules over an artin algebra Λ , then there exists $n \in \mathbb{N}$ and $f: M^n \to N$ such that $\eta_M N = \operatorname{Im} f$.

LEMMA.

Let M be a Λ -module over an artin algebra Λ and $m, n \in \mathbb{N}$. If $m \leq n$, then $\eta_{M_n} X \in \text{add } M_n$ for all $X \in \text{add } M_m$.

Date: 25.01.2008.

Proof.

We prove the claim by induction on n-m. Without loss of generality we may assume that X is indecomposable. If n = m, then the claim is obvious, thus assume that n > m. Let $i : \eta_{M_n} X \to X$ be the canonical injection, and fix epimorphisms $f : M_n^u \to \eta_{M_n} X$ and $g : M_m^v \to M_n^u$. If $ifg \notin \operatorname{rad}_{\Lambda}(M_m^v, X)$, then i is an isomorphism and f splits, hence the claim follows. Now assume that $ifg \in \operatorname{rad}_{\Lambda}(M_m^v, X)$. This implies that $X \in \operatorname{add} M_{m+1}$, thus the claim follows by inductive hypothesis.

NOTATION.

For modules M and X over an artin algebra Λ we put

$$\langle X \rangle_M := \{ f \in \operatorname{End}_{\Lambda}(M) \mid f \text{ factors through add } X \}.$$

LEMMA.

Let X, Y, Z be modules over an artin algebra Λ and $M := X \oplus Y \oplus Z$. If $\eta_Y Z = Z$, $\operatorname{rad}_{\Lambda}(Y,Y) \subset \langle Z \rangle_M$ and $\eta_Y X \in \operatorname{add} Y$, then $\langle Y \oplus Z \rangle_M / \langle Z \rangle_M$ is a heredity ideal in $\operatorname{End}_{\Lambda}(M) / \langle Z \rangle_M$.

THEOREM.

Let M be a module over an artin algebra Λ , $r := \min\{i \in \mathbb{N}_+ \mid M_r = 0\}$, and $N := \bigoplus_{i \in [0, r-1]} M_i$. If $I_j := \langle \bigoplus_{i=j}^{r-1} M_i \rangle_N$ for $j \in [0, r]$, then $0 = I_r \subset I_{r-1} \subset \cdots \subset I_1 \subset I_0 = \operatorname{End}_{\Lambda}(N)$

is a heredity chain in $\operatorname{End}_{\Lambda}(N)$.

Proof.

For each $j \in [1, r]$ we use the previous lemma with $X := \bigoplus_{i \in [0, j-1]} M_i$, $Y := M_i$, and $Z := \bigoplus_{i \in [j+1, r-1]} M_i$.

THEOREM.

If M is a module over an artin algebra Λ , then there exists a Λ -module N such that $\operatorname{End}_{\Lambda}(M \oplus N)$ is quasi-hereditary.

COROLLARY.

If Λ is an artin algebra, then rep. dim $\Lambda < \infty$.