A GENERALIZATION OF TITLING MODULES

BASED ON THE TALK BY LINGLING YAO

ASSUMPTION.

Throughout the talk R will be a fixed ring.

DEFINITION.

Let U be an R-module and $n \in \mathbb{N}$. An R-module M is called npresented by U if there exists an exact sequence of the form

 $U^{(X_{n-1})} \to \cdots \to U^{(X_0)} \to M \to 0.$

NOTATION.

For an *R*-module U and $n \in \mathbb{N}$ we denote by $\operatorname{Pres}_n(U)$ the full subcategory of the category of *R*-modules of modules which *n*-presented by U.

Remark.

If U is an R-module, then $\operatorname{Pres}_0(U)$ coincides with the category of R-modules.

Remark.

If U is an R-module, then $\operatorname{Pres}_1(U)$ is the category $\operatorname{Gen}(U)$ of modules generated by U.

Remark.

If U is an R-module, then $\operatorname{Pres}_2(U)$ is the category $\operatorname{Pres}(U)$ of modules presented by U.

DEFINITION.

An R-module U is called self-small if the canonical map

$$\operatorname{Hom}_R(U, U)^{(X)} \to \operatorname{Hom}_R(U, U^{(X)})$$

is an isomorphism for each set X.

DEFINITION.

Let $n \in \mathbb{N}_+$. An *R*-module *U* is called *n*-quasi-projective if for any exact sequence of the form

$$0 \to M \to U^{(X)} \to N \to 0$$

with $M \in \operatorname{Pres}_{n-1}(U)$, the induced sequence

$$0 \to \operatorname{Hom}_R(U, M) \to \operatorname{Hom}_R(U, U^{(X)}) \to \operatorname{Hom}_R(U, N) \to 0$$

is exact.

Date: 08.01.2008.

NOTATION.

Let U be an R-module and $S := \operatorname{End}_R(U)$. For each R-module M we define

$$\rho_M^U: U \otimes_S \operatorname{Hom}_R(U, M) \to M$$

by $\rho_M^U(u \otimes f) := f(u)$ for $u \in U$ and $f \in \operatorname{Hom}_R(U, M)$.

DEFINITION.

Let U be an R-module. An R-module M is called U-static if ρ_M^U is an isomorphism.

NOTATION.

For an R-module U we denote by Stat(U) the full subcategory of the category of R-modules of U-static modules.

NOTATION.

Let U be an R-module and $S := \operatorname{End}_R(U)$. For each R-module M we define

 $\delta_M^U: M \to \operatorname{Hom}_S(\operatorname{Hom}_R(M, U), U)$

by $(\delta_M(m))(f) := f(m)$ for $m \in M$ and $f \in \operatorname{Hom}_R(M, U)$.

DEFINITION.

Let U be an R-module. An R-module M is called U-reflexive if δ_M^U is an isomorphism.

NOTATION.

For an R-module U we denote by $\operatorname{Refl}(U)$ the subcategory of the category of R-modules of U-reflexive modules.

DEFINITION.

Let U be an R-module. An R-module M is called U-torsionless if δ_M^U is a monomorphism.

Remark.

Let U be an R-module. An R-module M is U-torsionless if and only if M belongs to the subcategory Cogen(U) of the category of R-modules of modules cogenerated by U.

DEFINITION.

Let V be an R-module, $S := \operatorname{End}_R(V)$, I be an injective cogenerator of the category of R-modules, and $W := \operatorname{Hom}_R(V, C)$. We say that V is a *-module if $\operatorname{Hom}_R(V, -)$ and $V \otimes_S -$ induce quasi-inverse equivalences between the categories $\operatorname{Gen}(V)$ and $\operatorname{Cogen}(W)$.

Remark.

An *R*-module V is tilting if and only if V is a \ast -module and the injective envelope of R belongs to Gen(V).

THEOREM.

The following conditions are equivalent for an R-module V.

- (1) V is a *-module.
- (2) V is self-small and 2-quasi-projective, and $\operatorname{Pres}(V) = \operatorname{Gen}(V)$.
- (3) V is self-small, and for any $W \in \operatorname{Add} V$ and any submodule M of W the following holds: $M \in \operatorname{Gen}(V)$ if and only if the canonical map $\operatorname{Ext}^1_R(V, M) \to \operatorname{Ext}^1_R(V, W)$ is injective.
- (4) V is self-small and for any exact sequence

$$0 \to L \to M \to N \to 0$$

with $M, N \in \text{Gen}(V)$ the following holds: $L \in \text{Gen}(V)$ if and only if the sequence

$$0 \to \operatorname{Hom}_{R}(V, L) \to \operatorname{Hom}_{R}(V, M) \to \operatorname{Hom}_{R}(V, N) \to 0$$

is exact.

DEFINITION.

Let $n \in \mathbb{N}_+$. An *R*-module *V* is called an *n*-*-module if *V* is self-small and (n + 1)-quasi-projective, and $\operatorname{Pres}_{n+1}(V) = \operatorname{Pres}_n(V)$.

DEFINITION.

An R-module V is called a static-*-module if V is self-small and for any exact sequence

$$0 \to L \to M \to N \to 0$$

with $M, N \in \text{Stat}(V)$ the following holds: $L \in \text{Stat}(V)$ if and only if the sequence

 $0 \to \operatorname{Hom}_R(V, L) \to \operatorname{Hom}_R(V, M) \to \operatorname{Hom}_R(V, N) \to 0$

is exact.