SKEW GROUP CATEGORIES AND DERIVED EQUIVALENCES

BASED ON THE TALK BY HIDETO ASASHIBA

DEFINITION.

Let \mathscr{C} be a category with an action of a group G. If $F : \mathscr{C} \to \mathscr{C}'$ is a functor, then a family $\phi = (\phi_{\alpha} : F \to F\alpha)_{\alpha \in G}$ of natural isomorphisms is called admissible if the following conditions are satisfied:

- (1) $\phi_{1,x} = \operatorname{Id}_{Fx}$ for each $x \in \mathscr{C}$,
- (2) $\phi_{\beta\alpha,x} = \phi_{\beta,\alpha x} \phi_{\alpha,x}$ for each $\alpha, \beta \in G$ and $x \in \mathscr{C}$.

NOTATION.

Let \mathscr{C} be a category with an action of a group $G, F : \mathscr{C} \to \mathscr{C}'$ a functor, and $\phi = (\phi_{\alpha} : F \to F\alpha)_{\alpha \in G}$ an admissible family of natural isomorphisms. For all $x, y \in \mathscr{C}$ we define

$$F_{x,y}^{(1)}: \bigoplus_{\alpha \in G} \mathscr{C}(\alpha x, y) \to \mathscr{C}'(Fx, Fy)$$

and

$$F_{x,y}^{(2)}: \bigoplus_{\alpha \in G} \mathscr{C}(x, \alpha y) \to \mathscr{C}'(Fx, Fy)$$

by

$$F_{x,y}^{(1)}((f_{\alpha})_{\alpha\in G}) := \sum_{\alpha\in G} Ff_{\alpha} \circ \phi_{\alpha,x} \text{ and } F_{x,y}^{(2)}((f_{\alpha})_{\alpha\in G}) := \sum_{\alpha\in G} \phi_{\alpha^{-1},\alpha y} \circ Ff_{\alpha}.$$

PROPOSITION.

Let \mathscr{C} be a category with an action of a group $G, F : \mathscr{C} \to \mathscr{C}'$ a functor, and $\phi = (\phi_{\alpha} : F \to F\alpha)_{\alpha \in G}$ an admissible family of natural isomorphisms. If $x, y \in \mathscr{C}$, then $F_{x,y}^{(1)}$ is isomorphism if and only if $F_{x,y}^{(2)}$ is an isomorphism.

DEFINITION.

Let \mathscr{C} be a category with an action of a group $G, F : \mathscr{C} \to \mathscr{C}'$ a functor, and $\phi = (\phi_{\alpha} : F \to F\alpha)_{\alpha \in G}$ an admissible family of natural transformations. The pair (F, ϕ) is called *G*-precovering if $F_{x,y}^{(2)}$ is an isomorphism for each $x, y \in \mathscr{C}$. If in addition, *F* is dense then we say that the pair (F, ϕ) is covering.

Date: 12.01.2008.

DEFINITION.

Let \mathscr{C} be a category with an action of a group G. We define the category \mathscr{C}/G as follows: \mathscr{C}/G has the same objects as \mathscr{C} and

$$(\mathscr{C}/G)(x,y) := \{ f \in \prod_{\alpha,\beta \in G} \mathscr{C}(\alpha x, \beta y) \mid f_{\gamma\alpha,\gamma\beta} = \gamma f_{\alpha,\beta} \text{ for } \alpha, \beta, \gamma \in G, \\ \#\{\beta \in G \mid f_{\alpha,\beta} \neq 0\} < \infty \text{ for each } \alpha \in G, \text{ and} \\ \#\{\alpha \in G \mid f_{\alpha,\beta} \neq 0\} < \infty \text{ for each } \beta \in G \}.$$

We have the canonical functor $\pi: \mathscr{C} \to \mathscr{C}/G$ defined by

 $\pi(x) := x$ and $\pi(f) := (\delta_{\alpha,\beta} \alpha f)_{\alpha,\beta}$

and the admissible family $\phi = (\phi_{\mu} : \pi \to \pi \mu)_{\mu \in G}$ of natural isomorphisms defined by

$$\phi_{\mu,x} = (\delta_{\alpha,\beta\mu} \operatorname{Id}_{\alpha x})_{\alpha,\beta}.$$

The pair (π, ϕ) is a *G*-covering functor.

Remark.

If \mathscr{C} is a category with an action of a group G, then

$$(\mathscr{C}/G)(x,y) \simeq \bigoplus_{\alpha \in G} \mathscr{C}(x,\alpha y).$$

DEFINITION.

A category \mathscr{C} is called basis if $x \not\simeq y$ for all $x, y \in \mathscr{C}, x \neq y$.

DEFINITION.

A category \mathscr{C} is called semi-perfect if $\mathscr{C}(x, x)$ is local for each $x \in \mathscr{C}$.

LEMMA.

If ${\mathscr C}$ is a locally finite dimensional basic and semi-perfect category with an action of a group G, then

$$\dim_k(\mathscr{C}/G)(x,x)/\operatorname{rad}(\mathscr{C}/G)(x,x) = |G_x|$$

for each $x \in \mathscr{C}$.