IYAMA'S FINITENESS THEOREM (VIA STRONGLY QUASI-HEREDITARY ALGEBRAS)

BASED ON THE TALK BY CLAUS MICHAEL RINGEL

NOTATION.

For an artin algebra Γ we denote by $\mathscr{S}(\Gamma)$ the collection of the simple Γ -modules.

DEFINITION.

If Γ is an artin algebra, then we call a function $l : \mathscr{S}(\Gamma) \to \mathbb{N}$ admissible provided l(S') = l(S'') for all $S', S'' \in \mathscr{S}(\Gamma)$ with $S' \simeq S''$.

NOTATION.

If Γ is an artin algebra with an admissible function $l : \mathscr{S}(\Gamma) \to \mathbb{N}$, then we put $n_{\Gamma} := |l(\mathscr{S}(\Gamma))|$.

NOTATION.

Let Γ be an artin algebra with an admissible function $l : \mathscr{S}(\Gamma) \to \mathbb{N}$. For $S \in \mathscr{S}(\Gamma)$ we define P(S), $\Delta(S)$, and R(S) in the following way: P(S) is the projective cover of S, $\Delta(S)$ is the maximal quotient of P(S)such that $l(T) \leq l(S)$ for each simple composition factor T of $\Delta(S)$, and R(S) is the kernel of the canonical projection map $P(S) \to \Delta(S)$.

Remark.

Let Γ be an artin algebra with an admissible function $l : \mathscr{S}(\Gamma) \to \mathbb{N}$. If $S \in \mathscr{S}(\Gamma)$ and there exists an exact sequence $0 \to R \to P(S) \to \Delta \to 0$ such that l(T) > l(S) for each direct summand T of top R and $l(T) \leq l(S)$ for each simple composition factor T of Δ , then $R \simeq R(S)$ and $\Delta \simeq \Delta(S)$.

DEFINITION.

Let Γ be an artin algebra together with an admissible function l: $\mathscr{S}(\Gamma) \to \mathbb{N}$. We call Γ strongly quasi-hereditary (with respect to l) if for each $S \in \mathscr{S}(\Gamma)$ the following conditions are satisfied: l(T) < l(S) for each simple composition factor T of rad $\Delta(S)$ and R(S) is a projective Γ -module.

REMARK.

If Γ is an artin algebra with an admissible function $l : \mathscr{S}(\Gamma) \to \mathbb{N}$, then Γ is strongly quasi-hereditary if and only if for each $S \in \mathscr{S}(\Gamma)$ there exists an exact sequence $0 \to R \to P(S) \to \Delta \to 0$ such that the following conditions are satisfied: $R \simeq P(T_1) \oplus \cdots \oplus P(T_m)$ for some $T_1, \ldots, T_m \in$

Date: 11.04.2008.

 $\mathscr{S}(\Gamma)$ with $l(T_1), \ldots, l(T_m) > l(S)$, and $\operatorname{Hom}_{\Lambda}(P(T), \operatorname{rad} \Delta) = 0$ for each $T \in \mathscr{S}(\Gamma)$ with $l(T) \ge l(S)$.

LEMMA.

If an artin algebra Γ with an admissible function $l : \mathscr{S}(\Gamma) \to \mathbb{N}$ is strongly quasi-hereditary, then gl. dim $\Gamma \leq n_{\Gamma}$.

NOTATION.

For a module X over an artin algebra Λ we put

$$\partial X := \{ f(x) \mid f \in \operatorname{rad}_{\Lambda}(X, X), \ x \in X \}.$$

More generally, we put $\partial^0 X := X$ and $\partial^i X := \partial \partial^{i-1} X$ for $i \in \mathbb{N}_+$. Moreover, $n(X) := \min\{i \in \mathbb{N} \mid \partial^i X = 0\}$. Finally, $\mathscr{C}_i(X) := \operatorname{add}(\partial^i X \oplus \cdots \oplus \partial^{n(X)-1} X)$ for $i \in \mathbb{N}$.

LEMMA.

Let X be a module over an artin algebra Λ and let N be an indecomposable Λ -module such that $N \in \operatorname{add} \partial^{i-1}X \setminus \operatorname{add} \partial^i X$ for some $i \in \mathbb{N}_+$. If

$$\alpha(N) := \{ f(x) \mid f \in \operatorname{rad}_{\Lambda}(\partial^{i-1}X, N), \ x \in \partial^{i-1}X \},\$$

then the natural inclusion map $\alpha(N) \to N$ is a right $\mathscr{C}_i(X)$ -approximation.

Proof.

Obviously, $\alpha(N) \in \mathscr{C}_i(X)$, thus it remains to show that $\operatorname{Im} f \subset \alpha(N)$ for each $f \in \operatorname{Hom}_{\Lambda}(\partial^j X, N)$ with $j \in [i, \infty)$. There exist epimorphisms $g: (\partial^i X)^p \to \partial^j X$ and $h: (\partial^{i-1} X)^q \to (\partial^i X)^p$ for some $p, q \in \mathbb{N}$. Since $N \notin \operatorname{add} \partial^i X$, $fgh \in \operatorname{rad}_{\Lambda}((\partial^{i-1} X)^q, N)$, and consequently $\operatorname{Im}(fgh) \subset \alpha(N)$. Since additionally gh is an epimorphism, the claim follows.

THEOREM.

Let X be a module over an artin algebra Λ . If M is a Λ -module such that $\mathscr{C}_0(X) = \operatorname{add} M$, then Γ is strongly quasi-hereditary with $n_{\Gamma} = n(X)$, where $\Gamma := \operatorname{End}_{\Lambda}(M)^{\operatorname{op}}$.

Proof.

Put $\mathscr{C}_i := \mathscr{C}_i(X)$ for $i \in \mathbb{N}$. Moreover, for a Λ -module L let $H_L := \operatorname{Hom}_{\Lambda}(M, L)$. Recall that the projective Γ -modules are of the form H_L for $L \in \operatorname{add} M$. Moreover, $\operatorname{Hom}_{\Gamma}(H_{L'}, H_{L''}) \simeq \operatorname{Hom}_{\Lambda}(L', L'')$ for all $L', L'' \in \operatorname{add} M$. In particular, $\operatorname{Hom}_{\Gamma}(H_{L'}, \operatorname{rad} H_{L''}) \simeq \operatorname{rad}_{\Lambda}(L', L'')$ for all $L', L'' \in \operatorname{add} M$.

Fix indecomposable $N \in \operatorname{add} M$ and let $i \in \mathbb{N}_+$ be such that $N \in \mathscr{C}_{i-1} \setminus \mathscr{C}_i$. Put

$$\alpha(N) := \{ f(x) \mid f \in \operatorname{rad}_{\Lambda}(\partial^{i-1}X, N), \ x \in \partial^{i-1}X \}.$$

Let $\mathscr{C}_i(M, N)$ denotes the space of $f \in \operatorname{Hom}_{\Lambda}(M, N)$ which factors through an object in \mathscr{C}_i . Observe that the previous lemma implies that the sequence $0 \to H_{\alpha(N)} \to H_N \to H_N/\mathscr{C}_i(M, N) \to 0$ is exact. Moreover $\alpha(N) \in \mathscr{C}_i$. Thus in order to finished the proof, it remains to show that $\operatorname{Hom}_{\Gamma}(H_L, \operatorname{rad} H_N/\mathscr{C}_i(M, N)) = 0$ for each indecomposable Λ module $L \in \mathscr{C}_{i-1}$. Fix such L. The claim is obvious if $L \in \mathscr{C}_i$, hence we may assume that $L \in \operatorname{add} \partial^{i-1}X$. If $\xi \in \operatorname{Hom}_{\Gamma}(H_L, \operatorname{rad} H_N/\mathscr{C}_i(M, N))$, then there exists $f \in \operatorname{rad}_{\Lambda}(L, N)$ such that $\xi(g) = fg + \mathscr{C}_i(M, N)$ for each $g \in H_L$. Since $L \in \operatorname{add} \partial^{i-1}X$, $\operatorname{Im} f \subset \alpha(N)$, and consequently $\xi = 0$.

COROLLARY.

If X is a module over an artin algebra Λ , then there exists a Λ -module M such that gl. dim End_{Λ}(M) $\leq n(X)$.