COMPLEXITY AND THE DIMENSION OF A TRIANGULATED CATEGORY, I

BASED ON THE TALK BY ANGELA HOLTMANN

The talk was based on the paper Complexity and the dimension of a triangulated category by Petter Andreas Bergh and Steffen Oppermann.

Assumption.

Throughout the talk k denotes a fixed artin commutative ring.

Definition.

For a triangulated category \mathscr{T} we define the dimension $\operatorname{dim} \mathscr{T}$ of \mathscr{T} by
$\operatorname{dim} \mathscr{T}:=\inf \left\{d \in \mathbb{N} \mid\right.$ there exists $M \in \mathscr{T}$ such that $\left.\mathscr{T}=\langle M\rangle_{d+1}\right\}$.

Definition.

A positively graded k-module V is said to be of finite type if $\ell\left(V_{n}\right)<\infty$ for all $n \in \mathbb{N}$.

Definition.
For a positively graded k-module V of finite type we define the rate of growth $\gamma(V)$ by

$$
\begin{aligned}
& \gamma(V):=\inf \{t \in \mathbb{N} \mid \text { there exists } a \in \mathbb{R} \\
& \left.\qquad \text { such that } \ell\left(V_{n}\right) \leq a n^{t-1} \text { for all } n \gg 0 .\right\}
\end{aligned}
$$

Notation.

For objects X and Y of a triangulated category \mathscr{T} we put

$$
\operatorname{Hom}_{\mathscr{T}}^{+}(X, Y):=\bigoplus_{n \in \mathbb{N}} \operatorname{Hom}_{\mathscr{T}}(X, Y[n]) .
$$

Definition.

For objects X and Y of a triangulated category \mathscr{T} we define the complexity $\mathrm{cx}_{\mathscr{T}}(X, Y)$ by

$$
\mathrm{cx}_{\mathscr{T}}(X, Y):=\gamma\left(\operatorname{Hom}_{\mathscr{T}}^{+}(X, Y)\right) .
$$

Lemma.
If X and Y are objects of a triangulated category \mathscr{T}, then

$$
\mathrm{cx}_{\mathscr{T}}(X, Y)=\mathrm{cx}_{\mathscr{T}}(X[i], Y[j])
$$

for all $i, j \in \mathbb{Z}$.

Lemma.
If $X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow X_{1}[1]$ is a distinguished triangle in a triangulated category \mathscr{T}, then

$$
\mathrm{cx}_{\mathscr{T}}\left(X_{2}, Y\right) \leq \max \left(\mathrm{cx}_{\mathscr{T}}\left(X_{1}, Y\right), \mathrm{cx}_{\mathscr{T}}\left(X_{3}, Y\right)\right)
$$

and

$$
\mathrm{cx}_{\mathscr{T}}\left(Y, X_{2}\right) \leq \max \left(\mathrm{cx}_{\mathscr{T}}\left(Y, X_{1}\right), \mathrm{cx}_{\mathscr{T}}\left(Y, X_{3}\right)\right)
$$

for each $Y \in \mathscr{T}$.

Lemma.

If X_{1}, X_{2} and Y are objects of a triangulated category \mathscr{T}, then

$$
\operatorname{cx}_{\mathscr{T}}\left(X_{1} \oplus X_{2}, Y\right)=\max \left(\mathrm{cx}_{\mathscr{J}}\left(X_{1}, Y\right), \mathrm{cx} \mathrm{x}_{\mathscr{J}}\left(X_{2}, Y\right)\right)
$$

and

$$
\mathrm{cx} \mathrm{x}_{\mathscr{T}}\left(Y, X_{1} \oplus X_{2}\right)=\max \left(\mathrm{cx}_{\mathscr{T}}\left(Y, X_{1}\right), \mathrm{cx}_{\mathscr{T}}\left(Y, X_{2}\right)\right) .
$$

Lemma.

Let X and Y be objects of a triangulated category \mathscr{T}. If $Z \in\langle X\rangle_{n}$ for some $n \in \mathbb{N}_{+}$, then

$$
\mathrm{cx}_{\mathscr{T}}(Z, Y) \leq \mathrm{cx}_{\mathscr{T}}(X, Y) \quad \text { and } \quad \mathrm{cx}_{\mathscr{T}}(Y, Z) \leq \mathrm{cx}_{\mathscr{T}}(Y, X) .
$$

Definition.

For a finitely generated module M over an artin k-algebra Λ we define the complexity $\operatorname{cx}_{\Lambda}(M)$ of M by

$$
\begin{aligned}
& \operatorname{cx}_{\Lambda}(M):=\inf \left\{t \in \mathbb{N}_{0} \mid \text { there exists } a \in \mathbb{R}\right. \\
& \left.\quad \text { such that } \ell\left(P_{n}\right) \leq a n^{t-1} \text { for all } n \gg 0\right\},
\end{aligned}
$$

where

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

is the minimal projective resolution of M.
Remark.
If M is a finitely generated module over an artin k-algebra Λ, then

$$
\operatorname{cx}_{\Lambda}(M)=\operatorname{cx}_{\mathscr{D}(\Lambda)}(M, \Lambda / \operatorname{rad} \Lambda) .
$$

Definition.

We say that a k-artin algebra Λ satisfies the condition (Fg) if there exists a commutative noetherian graded k-algebra H of finite type such that the following holds:
(1) for each $M \in \bmod \Lambda$ there exists a graded ring homomorphism $\varphi_{M}: H \rightarrow \operatorname{Ext}_{\Lambda}^{*}(M, M)$,
(2) if $M, N \in \bmod \Lambda$, then the actions of H on $\operatorname{Ext}_{\Lambda}^{*}(M, N)$ via φ_{M} and φ_{N} coincide and $\operatorname{Ext}_{\Lambda}^{*}(M, N)$ is a finitely generated H-module with respect to this action.

Definition.

The center $Z_{\mathscr{T}}$ of a triangulated category \mathscr{T} is a \mathbb{Z}-graded commutative ring such that for each $n \in \mathbb{Z} Z_{\mathscr{g}}[n]$ consists of the natural transformations $f: \operatorname{Id} \rightarrow \operatorname{Id}[n]$ such that $f_{X[1]}=f_{X}[1]$ for each $X \in \mathscr{T}$.
Remark.
If X and Y are objects of a triangulated category \mathscr{T}, then $Z_{\mathscr{T}}$ acts on $\operatorname{Hom}_{\mathscr{T}}^{+}(X, Y)$ by $f * g:=f_{Y}[m] g$ for $f \in Z_{\mathscr{T}}[n], n \in \mathbb{Z}$, and $g \in$ $\operatorname{Hom}_{\mathscr{T}}(X, Y[m]), m \in \mathbb{N}$.

Definition.

We say that a triangulated category \mathscr{T} satisfies the condition (Fgc) is there exists a commutative noetherian graded k-algebra H together with a graded ring homorphism $H \rightarrow Z_{\mathscr{T}}$ such that $\operatorname{Hom}_{\mathscr{T}}^{+}(X, Y)$ is a finitely generated H-module for all $X, Y \in \mathscr{T}$.

Proposition.

Let \mathscr{T} be a triangulated category satisfying the condition (Fgc). If M and C are objects of \mathscr{F} such that $c:=\operatorname{cx}_{\mathscr{T}}(M, C)>1$, then there exists a sequence

$$
M=K_{c} \xrightarrow{f_{c-1}} K_{c-1} \rightarrow \cdots \rightarrow K_{2} \xrightarrow{f_{1}} K_{1}
$$

such that the following conditions are satisfied:
(1) $\mathrm{cx}_{\mathscr{T}}\left(K_{j}, C\right)=j$ for each $j \in[1, r-1]$,
(2) $f_{1} \cdots f_{c-1} \neq 0$,
(3) $\operatorname{Hom}_{\mathscr{T}}\left(f_{j}, M[i]\right)=0$ for each $j \in[1, r-1]$ and $i \gg 0$.

Definition.

An object X of a triangulated category \mathscr{T} is called periodic if there exists $n \in \mathbb{N}_{+}$such that $X[n] \simeq X$.

Definition.

An object C of a triangulated category \mathscr{T} is called a periodicity generator if $\mathrm{cx}_{\mathscr{T}}(X, C)=1$ implies that X is periodic for each $X \in \mathscr{T}$.

Theorem.

If \mathscr{T} is a triangulated category satisfying the condition (Fgc), then

$$
\operatorname{dim} \mathscr{T} \geq \sup \left\{\mathrm{cx}_{\mathscr{T}}(X, C) \mid X \in \mathscr{T}\right\}-1
$$

for each periodicity generator $C \in \mathscr{T}$.

Proof.

Let $d:=\operatorname{dim} \mathscr{T}$. Obviously, we may assume that $d<\infty$. Fix $M \in \mathscr{T}$ such that $\mathscr{T}=\langle M\rangle_{d+1}$. Let $C \in \mathscr{T}$ be a periodicity generator and $c:=\mathrm{cx}_{\mathscr{T}}(M, C)$. If $c \leq 1$, then there is nothing to prove, thus assume that $c>1$. Then there exists a map $f: M \rightarrow K$ such that $\mathrm{cx}_{\mathscr{T}}(K, C)=1, f \neq 0$, and for each $X \in\langle M\rangle_{c-1}$ there exists $m \in \mathbb{N}$
with $\operatorname{Hom}_{\mathscr{T}}(f, X[i])=0$ for each $i \geq m$. Since C is a periodicity generator, it follows that K is periodic, hence there exists an isomorphism $g: K \rightarrow K[n]$ for some $n \in \mathbb{N}_{+}$. Consequently $\operatorname{Hom}_{\mathscr{T}}(f, K[n i]) \neq 0$ for all $i \in \mathbb{N}_{+}$, thus $K \notin\langle M\rangle_{c-1}$, what finishes the proof.

