COMPLEXITY AND THE DIMENSION OF A TRIANGULATED CATEGORY, I

BASED ON THE TALK BY ANGELA HOLTMANN

The talk was based on the paper *Complexity and the dimension of a triangulated category* by Petter Andreas Bergh and Steffen Oppermann.

ASSUMPTION.

Throughout the talk k denotes a fixed artin commutative ring.

DEFINITION.

For a triangulated category $\mathscr T$ we define the dimension $\dim \mathscr T$ of $\mathscr T$ by

dim $\mathscr{T} := \inf\{d \in \mathbb{N} \mid \text{there exists } M \in \mathscr{T} \text{ such that } \mathscr{T} = \langle M \rangle_{d+1} \}.$

DEFINITION.

A positively graded k-module V is said to be of finite type if $\ell(V_n) < \infty$ for all $n \in \mathbb{N}$.

DEFINITION.

For a positively graded k-module V of finite type we define the rate of growth $\gamma(V)$ by

 $\gamma(V) := \inf\{t \in \mathbb{N} \mid \text{there exists } a \in \mathbb{R}\}$

such that $\ell(V_n) \leq a n^{t-1}$ for all $n \gg 0$.

NOTATION.

For objects X and Y of a triangulated category \mathscr{T} we put

$$\operatorname{Hom}_{\mathscr{T}}^+(X,Y) := \bigoplus_{n \in \mathbb{N}} \operatorname{Hom}_{\mathscr{T}}(X,Y[n]).$$

DEFINITION.

For objects X and Y of a triangulated category \mathscr{T} we define the complexity $\operatorname{cx}_{\mathscr{T}}(X,Y)$ by

$$\operatorname{cx}_{\mathscr{T}}(X,Y) := \gamma(\operatorname{Hom}_{\mathscr{T}}^+(X,Y)).$$

LEMMA.

If X and Y are objects of a triangulated category \mathscr{T} , then

$$\operatorname{cx}_{\mathscr{T}}(X,Y) = \operatorname{cx}_{\mathscr{T}}(X[i],Y[j])$$

for all $i, j \in \mathbb{Z}$.

Date: 18.04.2008.

LEMMA.

If $X_1 \to X_2 \to X_3 \to X_1[1]$ is a distinguished triangle in a triangulated category \mathscr{T} , then

$$\operatorname{cx}_{\mathscr{T}}(X_2, Y) \le \max(\operatorname{cx}_{\mathscr{T}}(X_1, Y), \operatorname{cx}_{\mathscr{T}}(X_3, Y))$$

and

$$\operatorname{cx}_{\mathscr{T}}(Y, X_2) \le \max(\operatorname{cx}_{\mathscr{T}}(Y, X_1), \operatorname{cx}_{\mathscr{T}}(Y, X_3))$$

for each $Y \in \mathscr{T}$.

LEMMA.

If X_1, X_2 and Y are objects of a triangulated category \mathscr{T} , then

$$\operatorname{cx}_{\mathscr{T}}(X_1 \oplus X_2, Y) = \max(\operatorname{cx}_{\mathscr{T}}(X_1, Y), \operatorname{cx}_{\mathscr{T}}(X_2, Y))$$

and

$$\operatorname{cx}_{\mathscr{T}}(Y, X_1 \oplus X_2) = \max(\operatorname{cx}_{\mathscr{T}}(Y, X_1), \operatorname{cx}_{\mathscr{T}}(Y, X_2))$$

LEMMA.

Let X and Y be objects of a triangulated category \mathscr{T} . If $Z \in \langle X \rangle_n$ for some $n \in \mathbb{N}_+$, then

$$\operatorname{cx}_{\mathscr{T}}(Z,Y) \leq \operatorname{cx}_{\mathscr{T}}(X,Y)$$
 and $\operatorname{cx}_{\mathscr{T}}(Y,Z) \leq \operatorname{cx}_{\mathscr{T}}(Y,X).$

DEFINITION.

For a finitely generated module M over an artin k-algebra Λ we define the complexity $cx_{\Lambda}(M)$ of M by

 $\operatorname{cx}_{\Lambda}(M) := \inf\{t \in \mathbb{N}_0 \mid \text{there exists } a \in \mathbb{R}\}$

such that
$$\ell(P_n) \leq a n^{t-1}$$
 for all $n \gg 0$ },

where

$$\cdots \to P_2 \to P_1 \to P_0 \to M \to 0$$

is the minimal projective resolution of M.

Remark.

If M is a finitely generated module over an artin k-algebra Λ , then

$$\operatorname{cx}_{\Lambda}(M) = \operatorname{cx}_{\mathscr{D}^b(\Lambda)}(M, \Lambda/\operatorname{rad}\Lambda).$$

DEFINITION.

We say that a k-artin algebra Λ satisfies the condition (Fg) if there exists a commutative noetherian graded k-algebra H of finite type such that the following holds:

- (1) for each $M \in \text{mod } \Lambda$ there exists a graded ring homomorphism $\varphi_M : H \to \text{Ext}^*_{\Lambda}(M, M),$
- (2) if $M, N \in \text{mod }\Lambda$, then the actions of H on $\text{Ext}^*_{\Lambda}(M, N)$ via φ_M and φ_N coincide and $\text{Ext}^*_{\Lambda}(M, N)$ is a finitely generated H-module with respect to this action.

DEFINITION.

The center $Z_{\mathscr{T}}$ of a triangulated category \mathscr{T} is a \mathbb{Z} -graded commutative ring such that for each $n \in \mathbb{Z}$ $Z_{\mathscr{T}}[n]$ consists of the natural transformations $f : \mathrm{Id} \to \mathrm{Id}[n]$ such that $f_{X[1]} = f_X[1]$ for each $X \in \mathscr{T}$.

Remark.

If X and Y are objects of a triangulated category \mathscr{T} , then $Z_{\mathscr{T}}$ acts on $\operatorname{Hom}^+_{\mathscr{T}}(X,Y)$ by $f * g := f_Y[m]g$ for $f \in Z_{\mathscr{T}}[n]$, $n \in \mathbb{Z}$, and $g \in$ $\operatorname{Hom}_{\mathscr{T}}(X,Y[m]), m \in \mathbb{N}$.

DEFINITION.

We say that a triangulated category \mathscr{T} satisfies the condition (Fgc) is there exists a commutative noetherian graded k-algebra H together with a graded ring homorphism $H \to Z_{\mathscr{T}}$ such that $\operatorname{Hom}^+_{\mathscr{T}}(X,Y)$ is a finitely generated H-module for all $X, Y \in \mathscr{T}$.

PROPOSITION.

Let \mathscr{T} be a triangulated category satisfying the condition (Fgc). If M and C are objects of \mathscr{F} such that $c := \operatorname{cx}_{\mathscr{T}}(M, C) > 1$, then there exists a sequence

$$M = K_c \xrightarrow{f_{c-1}} K_{c-1} \to \dots \to K_2 \xrightarrow{f_1} K_1$$

such that the following conditions are satisfied:

(1) $\operatorname{cx}_{\mathscr{T}}(K_i, C) = j$ for each $j \in [1, r-1]$,

- $(2) f_1 \cdots f_{c-1} \neq 0,$
- (3) $\operatorname{Hom}_{\mathscr{T}}(f_j, M[i]) = 0$ for each $j \in [1, r-1]$ and $i \gg 0$.

DEFINITION.

An object X of a triangulated category \mathscr{T} is called periodic if there exists $n \in \mathbb{N}_+$ such that $X[n] \simeq X$.

DEFINITION.

An object C of a triangulated category \mathscr{T} is called a periodicity generator if $\operatorname{cx}_{\mathscr{T}}(X,C) = 1$ implies that X is periodic for each $X \in \mathscr{T}$.

THEOREM.

If \mathscr{T} is a triangulated category satisfying the condition (Fgc), then

$$\dim \mathscr{T} \ge \sup\{ \operatorname{cx}_{\mathscr{T}}(X, C) \mid X \in \mathscr{T} \} - 1$$

for each periodicity generator $C \in \mathscr{T}$.

Proof.

Let $d := \dim \mathscr{T}$. Obviously, we may assume that $d < \infty$. Fix $M \in \mathscr{T}$ such that $\mathscr{T} = \langle M \rangle_{d+1}$. Let $C \in \mathscr{T}$ be a periodicity generator and $c := \operatorname{cx}_{\mathscr{T}}(M, C)$. If $c \leq 1$, then there is nothing to prove, thus assume that c > 1. Then there exists a map $f : M \to K$ such that $\operatorname{cx}_{\mathscr{T}}(K, C) = 1$, $f \neq 0$, and for each $X \in \langle M \rangle_{c-1}$ there exists $m \in \mathbb{N}$

with $\operatorname{Hom}_{\mathscr{T}}(f, X[i]) = 0$ for each $i \geq m$. Since C is a periodicity generator, it follows that K is periodic, hence there exists an isomorphism $g: K \to K[n]$ for some $n \in \mathbb{N}_+$. Consequently $\operatorname{Hom}_{\mathscr{T}}(f, K[ni]) \neq 0$ for all $i \in \mathbb{N}_+$, thus $K \notin \langle M \rangle_{c-1}$, what finishes the proof.