# COMPLEXITY AND THE DIMENSION OF A TRIANGULATED CATEGORY, II 

BASED ON THE TALK BY DAIVA PUCINSKAITE

The talk was based on the paper Complexity and the dimension of a triangulated category by Petter Andreas Bergh and Steffen Oppermann.

## Assumption.

Throughout the talk $\Lambda$ is an Artin algebra over a commutative artinian ring $k$ such that there exists a commutative noetherian graded $k$-algebra $H$ of finite type with the following properties:
(1) for each $M \in \bmod \Lambda$ there exists a graded ring homomorphism $\varphi_{M}: H \rightarrow \operatorname{Ext}_{\Lambda}^{*}(M, M)$,
(2) if $M, N \in \bmod \Lambda$, then the actions of $H$ on $\operatorname{Ext}_{\Lambda}^{*}(M, N)$ via $\varphi_{M}$ and $\varphi_{N}$ coincide and $\operatorname{Ext}_{\Lambda}^{*}(M, N)$ is a finitely generated $H$-module with respect to this action.

## Notation.

For $X, Y \in \bmod \Lambda$ we put

$$
A(X, Y):=\left\{\eta \in H \mid \eta \theta=0 \text { for all } \theta \in \operatorname{Ext}_{\Lambda}^{*}(X, Y)\right\}
$$

Lemma.
If $X, Y \in \bmod \Lambda$, then $\gamma\left(\operatorname{Ext}_{\Lambda}^{*}(X, Y)\right)=\gamma(H / A(X, Y))$.
Proof.
Let $\theta_{1}, \ldots, \theta_{t}$ be generators of $\operatorname{Ext}_{\Lambda}^{*}(X, Y)$ over $H$. Then $A_{H}(X, Y)$ is the kernel of the map $H \rightarrow \bigoplus_{i \in[1, t]} \operatorname{Ext}_{\Lambda}^{*}(X, Y)$ given by $\eta \mapsto$ $\left(\eta \theta_{1}, \ldots, \eta \theta_{t}\right)$ and this shows that $\gamma\left(\operatorname{Ext}_{\Lambda}^{*}(X, Y)\right) \geq \gamma(H / A(X, Y))$. The other inequality follows since $\operatorname{Ext}_{\Lambda}^{*}(X, Y)$ is a finitely generated graded $H / A(X, Y)$-module.

Lemma.
If $M \in \bmod \Lambda$, then $\sqrt{A(M, \Lambda / \operatorname{rad} \Lambda)}=\sqrt{A(\Lambda / \operatorname{rad} \Lambda, M)}$.
Proof.
Let $\eta \in \sqrt{A(M, \Lambda / \operatorname{rad} \Lambda)}$. By easy induction on $\ell(X)$ one shows that $\eta \in \sqrt{A(M, X)}$ for all $X \in \bmod \Lambda$. In particular, $\eta \in \sqrt{A(M, M)}$, hence $\varphi_{M}\left(\eta^{n}\right)=0$ for some $n \in \mathbb{N}_{+}$. This immediately implies that $\eta \in \sqrt{A(\Lambda / \operatorname{rad} \Lambda, M)}$. The other inclusion follows similarly.

## Proposition.

If $M \in \bmod \Lambda$, then

$$
\gamma\left(\operatorname{Ext}_{\Lambda}^{*}(M, \Lambda / \operatorname{rad} \Lambda)\right)=\gamma\left(\operatorname{Ext}_{\Lambda}^{*}(\Lambda / \operatorname{rad} \Lambda, M)\right)
$$

## Proof.

Benson showed that $\operatorname{dim}(H / A)=\gamma(H / A)$ for any graded ideal $A$ of $H$.
Consequently, we have the following sequence of equalities

$$
\begin{aligned}
\gamma\left(\operatorname{Ext}_{\Lambda}^{*}(M, \Lambda / \operatorname{rad} \Lambda)\right) & =\gamma(H / A(M, \Lambda / \operatorname{rad} \Lambda)) \\
& =\operatorname{dim}(H / A(M, \Lambda / \operatorname{rad} \Lambda)) \\
& =\operatorname{dim}(H / \sqrt{A(M, \Lambda / \operatorname{rad} \Lambda)}) \\
& =\operatorname{dim}(H / \sqrt{A(\Lambda / \operatorname{rad} \Lambda, M)}) \\
& =\operatorname{dim}(H / A(\Lambda / \operatorname{rad} \Lambda, M)) \\
& =\gamma(H / A(\Lambda / \operatorname{rad} \Lambda, M)) \\
& =\gamma\left(\operatorname{Ext}_{\Lambda}^{*}(\Lambda / \operatorname{rad} \Lambda, M)\right) .
\end{aligned}
$$

Corollary.
$\Lambda$ is Gorenstein, i.e. $\operatorname{id}_{\Lambda} \Lambda<\infty$ and $\operatorname{pd}_{\Lambda} D(\Lambda)<\infty$.

## Proof.

Since $\gamma\left(\operatorname{Ext}_{\Lambda}^{*}(\Lambda / \operatorname{rad} \Lambda, \Lambda)\right)=\gamma\left(\operatorname{Ext}_{\Lambda}^{*}(\Lambda, \Lambda / \operatorname{rad} \Lambda)\right)=0$, the first part follows. The second part follows similarly.

## Notation.

We put

$$
\operatorname{MCM}(\Lambda):=\left\{M \in \bmod \Lambda \mid \operatorname{Ext}_{\Lambda}^{m}(M, \Lambda)=0 \text { for each } m \in \mathbb{N}_{+}\right\} .
$$

## Remark.

Since $\Lambda$ is Gorenstein, $\mathscr{D}^{b}(\Lambda) / \mathscr{D}^{\text {perf }}(\Lambda)$ is equivalent to $\underline{\operatorname{MCM}(\Lambda) \text {. }}$

## Lemma.

If $X \in \bmod \Lambda$ and $n:=\operatorname{id}_{\Lambda} \Lambda$, then $\Omega^{n} X \in \operatorname{MCM}(\Lambda)$.

## Proof.

This follows since $\operatorname{Ext}_{\Lambda}^{m}\left(\Omega^{n} X, \Lambda\right) \simeq \operatorname{Ext}_{\Lambda}^{m+n}(X, \Lambda)$ for all $m \in \mathbb{N}_{+}$.
Lemma.
If $n:=\operatorname{id}_{\Lambda} \Lambda$, then $\operatorname{Ext}_{\Lambda}^{m}(X, Y) \simeq \operatorname{Ext}_{\Lambda}^{m+1}(X, \Omega Y)$ for all $m>n$.

## Proof.

It is enough to apply $\operatorname{Hom}_{\Lambda}(X,-)$ to the exact sequence $0 \rightarrow \Omega Y \rightarrow$ $P \rightarrow Y \rightarrow 0$ with $P$ projective.

## Corollary.

If $X, Y \in \bmod \Lambda$, then

$$
\operatorname{cx}_{\mathscr{P}^{b}(\Lambda)}(X, Y)=\operatorname{cx}_{\mathscr{D}^{b}(\Lambda)}\left(\Omega^{p} X, \Omega^{q} Y\right)
$$

for all $p, q \in \mathbb{N}$.

Lemma.
If $X, Y \in \operatorname{MCM}(\Lambda)$, then $\operatorname{Hom}_{M C M(\Lambda)}(X, Y[m]) \simeq \operatorname{Ext}_{\Lambda}^{m}(X, Y)$ for all $m \in \mathbb{N}_{+}$.

Proof.
It follows by induction since we have an exact sequence $0 \rightarrow Z \rightarrow P \rightarrow$ $Z[1] \rightarrow 0$ with $P$ projective for each $Z \in \operatorname{MCM}(\Lambda)$.

## Corollary.

If $X, Y \in \operatorname{MCM}(\Lambda)$, then

$$
\operatorname{cx}_{\underline{M C M}(\Lambda)}(X, Y)=\operatorname{cx}_{\mathscr{D}^{b}(\Lambda)}(X, Y) .
$$

Lemma.
Let $n:=\operatorname{id}_{\Lambda} \Lambda$ and $C:=\Omega^{n}(\Lambda / \operatorname{rad} \Lambda)$. If $\operatorname{cx}_{\underline{\operatorname{MCM}(\Lambda)}}(K, C)=0$ for $K \in \operatorname{MCM}(\Lambda)$, then $K$ is a projective $\Lambda$-module.

Proof.
Observe that

$$
\begin{aligned}
& \operatorname{cx}_{\Lambda}(K)=\operatorname{cx}_{\mathscr{D}^{b}(\Lambda)}(K, \Lambda / \operatorname{rad} \Lambda) \\
&=\operatorname{cx}_{\mathscr{D} b}(\Lambda) \\
&(K, C)=\operatorname{cx}_{\underline{M C M}(\Lambda)}(K, C)=0,
\end{aligned}
$$

hence $\operatorname{pd}_{\Lambda} K<\infty$. The claim follows since the only modules of finite projective dimension in $\operatorname{MCM}(\Lambda)$ are the projective ones.

## Theorem.

$\mathscr{D}^{b}(\Lambda) / \mathscr{D}^{\text {perf }}(\Lambda)$ satisfies the condition (Fgc) and

$$
\operatorname{dim}\left(\mathscr{D}^{b}(\Lambda) / \mathscr{D}^{\operatorname{perf}}(\Lambda)\right) \geq \operatorname{cx}_{\Lambda}(\Lambda / \operatorname{rad} \Lambda)-1
$$

Proof.
Recall that $\mathscr{D}^{b}(\Lambda) / \mathscr{D}^{\text {perf }}(\Lambda)$ is equivalent to $\underline{\operatorname{MCM}(\Lambda) \text {, hence the first }}$ claim follows. Let $n:=\operatorname{id}_{\Lambda} \Lambda$ and $C:=\Omega^{n}(\Lambda / \operatorname{rad} \Lambda)$. We show that $C$ is a periodicity generator. Indeed, if $\operatorname{cx}_{\underline{\operatorname{MCM}(\Lambda)}}(M, C)=1$ for $M \in$ $\operatorname{MCM}(\Lambda)$, then we construct a triangle $M \rightarrow M[n] \rightarrow K \rightarrow M[1]$ for some $n \in \mathbb{N}_{+}$and $K \in \operatorname{MCM}(\Lambda)$ such that $\operatorname{cx}_{\operatorname{MCM}(\Lambda)}(K, C)=0$. According to the previous lemma $K=0$ in $\underline{\operatorname{MCM}}(\Lambda)$, hence $M \simeq M[n]$. Consequently,

$$
\operatorname{dim}\left(\mathscr{D}^{b}(\Lambda) / \mathscr{D}^{\operatorname{perf}}(\Lambda)\right) \geq \sup \left\{\operatorname{cx}_{\underline{\operatorname{MCM}(\Lambda)}}(M, C) \mid M \in \operatorname{MCM}(\Lambda)\right\}-1 .
$$

Observe that

$$
\begin{aligned}
& \operatorname{cx}_{\underline{M C M}(\Lambda)}(C, C)= \operatorname{cx}_{\mathscr{D} b}(\Lambda) \\
&=\operatorname{cx}_{\mathscr{D} b}(\Lambda) \\
&(\Lambda / \operatorname{rad} \Lambda, \Lambda / \operatorname{rad} \Lambda)=\operatorname{cx}_{\Lambda}(\Lambda / \operatorname{rad} \Lambda)
\end{aligned}
$$

hence the claim follows.

