COMPLEXITY AND THE DIMENSION OF A TRIANGULATED CATEGORY, II

BASED ON THE TALK BY DAIVA PUCINSKAITE

The talk was based on the paper *Complexity and the dimension of a triangulated category* by Petter Andreas Bergh and Steffen Oppermann.

ASSUMPTION.

Throughout the talk Λ is an Artin algebra over a commutative artinian ring k such that there exists a commutative noetherian graded k-algebra H of finite type with the following properties:

- (1) for each $M \in \text{mod } \Lambda$ there exists a graded ring homomorphism $\varphi_M : H \to \text{Ext}^*_{\Lambda}(M, M),$
- (2) if $M, N \in \text{mod }\Lambda$, then the actions of H on $\text{Ext}^*_{\Lambda}(M, N)$ via φ_M and φ_N coincide and $\text{Ext}^*_{\Lambda}(M, N)$ is a finitely generated H-module with respect to this action.

NOTATION.

For $X, Y \in \text{mod} \Lambda$ we put

$$A(X,Y) := \{ \eta \in H \mid \eta \theta = 0 \text{ for all } \theta \in \text{Ext}^*_{\Lambda}(X,Y) \}.$$

LEMMA.

If
$$X, Y \in \text{mod } \Lambda$$
, then $\gamma(\text{Ext}^*_{\Lambda}(X, Y)) = \gamma(H/A(X, Y)).$

Proof.

Let $\theta_1, \ldots, \theta_t$ be generators of $\operatorname{Ext}^*_{\Lambda}(X, Y)$ over H. Then $A_H(X, Y)$ is the kernel of the map $H \to \bigoplus_{i \in [1,t]} \operatorname{Ext}^*_{\Lambda}(X, Y)$ given by $\eta \mapsto (\eta \theta_1, \ldots, \eta \theta_t)$ and this shows that $\gamma(\operatorname{Ext}^*_{\Lambda}(X, Y)) \geq \gamma(H/A(X, Y))$. The other inequality follows since $\operatorname{Ext}^*_{\Lambda}(X, Y)$ is a finitely generated graded H/A(X, Y)-module.

LEMMA.

If
$$M \in \text{mod } \Lambda$$
, then $\sqrt{A(M, \Lambda/ \operatorname{rad} \Lambda)} = \sqrt{A(\Lambda/ \operatorname{rad} \Lambda, M)}$.

Proof.

Let $\eta \in \sqrt{A(M, \Lambda/ \operatorname{rad} \Lambda)}$. By easy induction on $\ell(X)$ one shows that $\eta \in \sqrt{A(M, X)}$ for all $X \in \operatorname{mod} \Lambda$. In particular, $\eta \in \sqrt{A(M, M)}$, hence $\varphi_M(\eta^n) = 0$ for some $n \in \mathbb{N}_+$. This immediately implies that $\eta \in \sqrt{A(\Lambda/ \operatorname{rad} \Lambda, M)}$. The other inclusion follows similarly.

Date: 18.04.2008.

PROPOSITION.

If $M \in \text{mod}\Lambda$, then

$$\gamma(\operatorname{Ext}^*_{\Lambda}(M, \Lambda/\operatorname{rad} \Lambda)) = \gamma(\operatorname{Ext}^*_{\Lambda}(\Lambda/\operatorname{rad} \Lambda, M))$$

Proof.

Benson showed that $\dim(H/A) = \gamma(H/A)$ for any graded ideal A of H. Consequently, we have the following sequence of equalities

$$\begin{split} \gamma(\operatorname{Ext}^*_{\Lambda}(M,\Lambda/\operatorname{rad}\Lambda)) &= \gamma(H/A(M,\Lambda/\operatorname{rad}\Lambda)) \\ &= \dim(H/A(M,\Lambda/\operatorname{rad}\Lambda)) \\ &= \dim(H/\sqrt{A(M,\Lambda/\operatorname{rad}\Lambda)}) \\ &= \dim(H/\sqrt{A(\Lambda/\operatorname{rad}\Lambda,M)}) \\ &= \dim(H/A(\Lambda/\operatorname{rad}\Lambda,M)) \\ &= \gamma(H/A(\Lambda/\operatorname{rad}\Lambda,M)) \\ &= \gamma(\operatorname{Ext}^*_{\Lambda}(\Lambda/\operatorname{rad}\Lambda,M)). \end{split}$$

COROLLARY.

 Λ is Gorenstein, i.e. $\operatorname{id}_{\Lambda} \Lambda < \infty$ and $\operatorname{pd}_{\Lambda} D(\Lambda) < \infty$.

Proof.

Since $\gamma(\operatorname{Ext}^*_{\Lambda}(\Lambda/\operatorname{rad}\Lambda,\Lambda)) = \gamma(\operatorname{Ext}^*_{\Lambda}(\Lambda,\Lambda/\operatorname{rad}\Lambda)) = 0$, the first part follows. The second part follows similarly.

NOTATION.

We put

$$MCM(\Lambda) := \{ M \in \text{mod}\,\Lambda \mid \text{Ext}^m_{\Lambda}(M,\Lambda) = 0 \text{ for each } m \in \mathbb{N}_+ \}.$$

Remark.

Since Λ is Gorenstein, $\mathscr{D}^{b}(\Lambda)/\mathscr{D}^{\text{perf}}(\Lambda)$ is equivalent to <u>MCM</u>(Λ).

LEMMA.

If $X \in \text{mod } \Lambda$ and $n := \text{id}_{\Lambda} \Lambda$, then $\Omega^n X \in \text{MCM}(\Lambda)$.

Proof.

This follows since $\operatorname{Ext}_{\Lambda}^{m}(\Omega^{n}X,\Lambda) \simeq \operatorname{Ext}_{\Lambda}^{m+n}(X,\Lambda)$ for all $m \in \mathbb{N}_{+}$.

LEMMA.

If
$$n := \mathrm{id}_{\Lambda} \Lambda$$
, then $\mathrm{Ext}_{\Lambda}^{m}(X, Y) \simeq \mathrm{Ext}_{\Lambda}^{m+1}(X, \Omega Y)$ for all $m > n$.

Proof.

It is enough to apply $\operatorname{Hom}_{\Lambda}(X, -)$ to the exact sequence $0 \to \Omega Y \to P \to Y \to 0$ with P projective.

COROLLARY.

If $X, Y \in \text{mod} \Lambda$, then

$$\operatorname{cx}_{\mathscr{D}^b(\Lambda)}(X,Y) = \operatorname{cx}_{\mathscr{D}^b(\Lambda)}(\Omega^p X, \Omega^q Y)$$

for all $p, q \in \mathbb{N}$.

LEMMA.

If $X, Y \in MCM(\Lambda)$, then $\operatorname{Hom}_{\underline{MCM}(\Lambda)}(X, Y[m]) \simeq \operatorname{Ext}_{\Lambda}^{m}(X, Y)$ for all $m \in \mathbb{N}_{+}$.

Proof.

It follows by induction since we have an exact sequence $0 \to Z \to P \to Z[1] \to 0$ with P projective for each $Z \in MCM(\Lambda)$.

COROLLARY.

If $X, Y \in MCM(\Lambda)$, then

$$\operatorname{cx}_{\underline{\mathrm{MCM}}(\Lambda)}(X,Y) = \operatorname{cx}_{\mathscr{D}^b(\Lambda)}(X,Y).$$

LEMMA.

Let $n := \mathrm{id}_{\Lambda} \Lambda$ and $C := \Omega^n(\Lambda/\mathrm{rad} \Lambda)$. If $\mathrm{cx}_{\mathrm{MCM}(\Lambda)}(K, C) = 0$ for $K \in \mathrm{MCM}(\Lambda)$, then K is a projective Λ -module.

Proof.

Observe that

$$cx_{\Lambda}(K) = cx_{\mathscr{D}^{b}(\Lambda)}(K, \Lambda / \operatorname{rad} \Lambda)$$
$$= cx_{\mathscr{D}^{b}(\Lambda)}(K, C) = cx_{\underline{\mathrm{MCM}}(\Lambda)}(K, C) = 0,$$

hence $\operatorname{pd}_{\Lambda} K < \infty$. The claim follows since the only modules of finite projective dimension in MCM(Λ) are the projective ones.

THEOREM.

 $\mathscr{D}^{b}(\Lambda)/\mathscr{D}^{\mathrm{perf}}(\Lambda)$ satisfies the condition (Fgc) and $\dim(\mathscr{D}^{b}(\Lambda)/\mathscr{D}^{\mathrm{perf}}(\Lambda)) \geq \operatorname{cx}_{\Lambda}(\Lambda/\operatorname{rad}\Lambda) - 1.$

Proof.

Recall that $\mathscr{D}^b(\Lambda)/\mathscr{D}^{\mathrm{perf}}(\Lambda)$ is equivalent to $\underline{\mathrm{MCM}}(\Lambda)$, hence the first claim follows. Let $n := \mathrm{id}_{\Lambda} \Lambda$ and $C := \Omega^n(\Lambda/\mathrm{rad}\,\Lambda)$. We show that C is a periodicity generator. Indeed, if $\mathrm{cx}_{\underline{\mathrm{MCM}}(\Lambda)}(M,C) = 1$ for $M \in$ $\mathrm{MCM}(\Lambda)$, then we construct a triangle $M \to M[n] \to K \to M[1]$ for some $n \in \mathbb{N}_+$ and $K \in \mathrm{MCM}(\Lambda)$ such that $\mathrm{cx}_{\underline{\mathrm{MCM}}(\Lambda)}(K,C) = 0$. According to the previous lemma K = 0 in $\underline{\mathrm{MCM}}(\Lambda)$, hence $M \simeq M[n]$. Consequently,

$$\dim(\mathscr{D}^{b}(\Lambda)/\mathscr{D}^{\mathrm{perf}}(\Lambda)) \geq \sup\{\mathrm{cx}_{\mathrm{MCM}(\Lambda)}(M,C) \mid M \in \mathrm{MCM}(\Lambda)\} - 1.$$

Observe that

$$cx_{\underline{\mathrm{MCM}}(\Lambda)}(C,C) = cx_{\mathscr{D}^{b}(\Lambda)}(C,C)$$
$$= cx_{\mathscr{D}^{b}(\Lambda)}(\Lambda/\operatorname{rad}\Lambda,\Lambda/\operatorname{rad}\Lambda) = cx_{\Lambda}(\Lambda/\operatorname{rad}\Lambda),$$

hence the claim follows.