DIMENSIONS AND VANISHING OF EXTENSIONS

BASED ON THE TALK BY JEAN-MARIE BOIS

The talk was based on the paper Lower bounds for Auslander's representation dimension by Steffen Oppermann.

ASSUMPTION.

Throughout the talk Λ is an Artin algebra.

DEFINITION.

Let $M \in \text{mod } \Lambda$. For $X \in \text{mod } \Lambda$ we define the *M*-resolution dimension *M*-res. dim(*X*) of *X* as the minimal $n \in \mathbb{N}$ such that there exists a complex

 $0 \to M_n \to \cdots \to M_0 \to X \to 0$

such that $M_0, \ldots, M_n \in \text{add } M$ and the sequence

$$0 \to \operatorname{Hom}_{\Lambda}(M, M_n) \to \cdots \to \operatorname{Hom}_{\Lambda}(M, M_0) \to \operatorname{Hom}_{\Lambda}(M, X) \to 0$$

is exact.

DEFINITION.

Let $M \in \text{mod} \Lambda$. For a subcategory \mathscr{X} of $\text{mod} \Lambda$ we define the *M*-resolution dimension *M*-res. dim (\mathscr{X}) of \mathscr{X} by

$$M \operatorname{-res.dim}(\mathscr{X}) := \sup\{M \operatorname{-res.dim}(X) \mid X \in \mathscr{X}\}.$$

DEFINITION.

For a subcategory \mathscr{X} of mod Λ we define the resolution dimension res. dim (\mathscr{X}) of \mathscr{X} by

res. dim
$$(\mathscr{X}) := \min\{M \text{-res. dim}(\mathscr{X}) \mid M \in \mod \Lambda\}.$$

DEFINITION.

Let $M \in \text{mod } \Lambda$. For $X \in \text{mod } \Lambda$ we define the *M*-weak resolution dimension M-w.res.dim(X) of X as the minimal $n \in \mathbb{N}$ such that there exists an exact sequence

$$0 \to M_n \to \dots \to M_0 \to X \to 0$$

with $M_0, \ldots, M_n \in \operatorname{add} M$.

DEFINITION.

Let $M \in \text{mod } \Lambda$. For a subcategory \mathscr{X} of $\text{mod } \Lambda$ we define the *M*-weak resolution dimension M-w. res. dim (\mathscr{X}) of \mathscr{X} by

$$M$$
-res. dim $(\mathscr{X}) := \sup\{M$ -w. res. dim $(X) \mid X \in \mathscr{X}\}.$

Date: 18.04.2008.

DEFINITION.

For a subcategory \mathscr{X} of mod Λ we define the weak resolution dimension w. res. dim (\mathscr{X}) of \mathscr{X} by

w. res. dim $(\mathscr{X}) := \min\{M \text{-w. res. dim}(\mathscr{X}) \mid M \in \mod \Lambda\}.$

Remark.

If M is a generator of mod Λ , then M-w. res. dim $(X) \leq M$ res. dim(X) for each $X \in \text{mod } \Lambda$.

DEFINITION.

For a subcategory \mathscr{C} of $\mathscr{D}^b(\Lambda)$ we define the dimension dim \mathscr{C} of \mathscr{C} by

 $\dim \mathscr{C} := \min\{\min\{n \in \mathbb{N} \mid \mathscr{C} \subseteq \langle M \rangle_{n+1}\} \mid M \in \mathscr{C}\}.$

Similarly we define $\dim \underline{\mathrm{mod}} \Lambda$.

THEOREM.

We have the following inequalities:

 $\dim \mod \Lambda \leq w. \operatorname{res.} \dim \Lambda, \dim \mathscr{D}^b(\Lambda),$

w. res. dim $\Lambda \leq$ rep. dim $\Lambda - 2$, gl. dim Λ , LL(Λ) - 1,

 $\dim \mathscr{D}^{b}(\Lambda) \leq \operatorname{rep.dim} \Lambda, \operatorname{gl.dim} \Lambda, \operatorname{LL}(\Lambda) - 1.$

Moreover, if Λ is selfinjective, then

 $\dim \underline{\mathrm{mod}}\,\Lambda \leq \dim \mathrm{mod}\,\Lambda.$

Assumption.

Let $R := k[X_1, \ldots, X_d]/I$ for a field k and a prime ideal I.

LEMMA.

If $M \in \text{mod } R$, then there is a nonempty open subset Ω of MaxSpec(R) such that $R_{\mathfrak{m}} \otimes_R M$ is a free $R_{\mathfrak{m}}$ -module for all $\mathfrak{m} \in \Omega$.

LEMMA.

If $\mathfrak{m} \in \operatorname{MaxSpec}(R)$, then the canonical functor $\mathscr{D}^b(R_{\mathfrak{m}}) \to \mathscr{D}^b(R)$ is full.

Proof.

Let X and Y be complexes over $R_{\mathfrak{m}}$ and $f \in \operatorname{Hom}_{\mathscr{D}^{b}(R)}(X, Y)$. Then $f = b^{-1} \circ a$ for a morphism $a : X \to Z$ and a quasi-isomorphism $b : Y \to Z$, where Z is a complex over R. For a complex U over R let $\eta_{U} : U \to R_{\mathfrak{m}} \otimes_{R} U$ be the canonical morphism. Obviously η_{U} is an isomorphism for a complex U over $R_{\mathfrak{m}}$. Observe that $\eta_{Z}b = (\operatorname{Id}_{R_{\mathfrak{m}}} \otimes b)\eta_{Y}$, hence $\eta_{Z}b$ is a quasi-isomorphism. Consequently, $f = (\eta_{Z}b)^{-1} \circ (\eta_{Z}a)$ and the claim follows.

PROPOSITION.

If $M \in \mathscr{D}^b(R)$, then there is a nonempty open subset Ω of MaxSpec(R) such that

$$\operatorname{Hom}_{\mathscr{D}^{b}(R)}(X_{1}, X_{2}[1]) \operatorname{Hom}_{\mathscr{D}^{b}(R)}(M, X_{1}) = 0$$

for all $X_1, X_2 \in \text{mod } R_{\mathfrak{m}}$ and $\mathfrak{m} \in \Omega$.

Proof.

Let P be the projective resolution of M (observe that P may be not bounded above). Then

$$\operatorname{Hom}_{\mathscr{D}^b(R)}(M,N) \simeq \operatorname{Hom}_{\mathscr{K}(R)}(P,N)$$

for each $N \in \mathscr{D}^b(R)$. Let

$$Q: \dots \to 0 \to P_0 / \operatorname{Im} \partial_P^1 \to P_{-1} \to P_{-2} \to \dots,$$

and $Q_{\mathfrak{m}} := R_{\mathfrak{m}} \otimes_R Q$ for $\mathfrak{m} \in \operatorname{MaxSpec}(R)$. The above isomorphism implies that the canonical map $P \to Q_{\mathfrak{m}}$ induces an epimorphism

 $\operatorname{Hom}_{\mathscr{D}^b(R)}(Q_{\mathfrak{m}},X) \to \operatorname{Hom}_{\mathscr{D}^b(R)}(M,X)$

for each $X \in \text{mod } R_{\mathfrak{m}}$ and $\mathfrak{m} \in \text{MaxSpec}(R)$. Using in addition the previous lemma, it suffices to show that there exists an open subset Ω of MaxSpec(R) such that

 $\operatorname{Hom}_{\mathscr{D}^{b}(R_{\mathfrak{m}})}(X_{1}, X_{2}[1]) \operatorname{Hom}_{\mathscr{D}^{b}(R_{\mathfrak{m}})}(Q_{\mathfrak{m}}, X_{1}) = 0$

for all $X_1, X_2 \in \text{mod } R_{\mathfrak{m}}$ and $\mathfrak{m} \in \Omega$.

Let Ω be a nonempty open subset of $\operatorname{MaxSpec}(R)$ such that $R_{\mathfrak{m}} \otimes_R (P_0/\operatorname{Im} \partial_P^1)$ is a free $R_{\mathfrak{m}}$ -module for each $\mathfrak{m} \in \Omega$. If $X_1, X_2 \in \operatorname{mod} R_{\mathfrak{m}}$ for $\mathfrak{m} \in \Omega$, then

 $\operatorname{Hom}_{\mathscr{D}^{b}(R_{\mathfrak{m}})}(Q_{\mathfrak{m}}, X_{2}[1]) \simeq \operatorname{Hom}_{\mathscr{K}(R_{\mathfrak{m}})}(Q_{\mathfrak{m}}, X_{2}[1]) = 0$

and the claim follows.