ACCESSIBLE ALGEBRAS AND SPECTRAL ANALYSIS

BASED ON THE TALK BY JOSE ANTONIO DE LA PEÑA

Assumption.

Throughout the talk k is a fixed algebraically closed field.

Definition.

A module M over an algebra A is called exceptional if $\operatorname{End}_{k}(M)=k$ and $\operatorname{Ext}_{A}^{i}(M, M)=0$ for all $i \in \mathbb{N}_{+}$.
Definition.
We call an algebra A accessible if there exists a sequence of algebras $k=A_{0}, \ldots, A_{s}=A$ such that for each $i \in[1, s], A_{i}=A_{i-1}\left[M_{i-1}\right]$ for an exceptional A_{i-1}-module M_{i-1}.

Example.
If A is a tree algebra, then A is accessible.
FACt.
If A is an accessible algebra, then A is triangular. In particular, gl. $\operatorname{dim} A<\infty$.

FACT
If A is an accessible algebra, then $\operatorname{HH}^{0}(A)=k$ and $\mathrm{HH}^{i}(A)=0$ for all $i \in \mathbb{N}_{+}$. It follows immediately by considering Happel long exact sequence of Hochschild cohomolgies.

FACt.
If $d \in \mathbb{N}_{+}$, then there are only finitely many accessible algebras of dimension d.

FACt.
If A is an accessible algebra, then A is a smooth point of the scheme of algebras, since $\mathrm{HH}^{3}(A)=0$.

Notation.

For an algebra A of finite global dimension we denote by C_{A} the Cartan matrix of A.

Definition.
For an algebra A of finite global dimension we put $\varphi_{A}:=-C_{A}^{\operatorname{tr}} C_{A}$ and call it the Coxeter transformation of A.

Notation

For an algebra A of finite global dimension we put $\chi_{A}:=\operatorname{det}\left(t \cdot \operatorname{Id}-\varphi_{A}\right)$.

Notation.

For an algebra A of finite global dimension we denote $\operatorname{by} \operatorname{Spec} \varphi_{A}$ the spectrum of φ_{A}.

Definition.

For an algebra A of finite global dimension we put $\rho_{A}:=\max \{|\lambda| \mid \lambda \in$ $\left.\operatorname{Spec} \varphi_{A}\right\}$ and call it the spectral radius of A.

FACT.
If A is an algebra of finite global dimension, then $[t] \chi_{A}=1$.

Proof.

Note that $[t] \chi_{A}=-\operatorname{Tr} \varphi_{A}$. Moreover, according to Happel

$$
\operatorname{Tr} \varphi_{A}=-\sum_{i \in \mathbb{N}}(-1)^{i} \operatorname{dim}_{k} \operatorname{HH}^{i}(A),
$$

hence the claim follows.

FACT.

If A is an algebra of finite global dimension, then $\chi_{A}(-1)=m^{2}$ for some $m \in \mathbb{N}$. Moreover, if A has an odd number of vertices, then $\chi_{A}(-1)=0$.
Proof.
Easy calculations show $\chi_{A}(-1)=\operatorname{det}\left(C_{A}^{\mathrm{tr}}-C_{A}\right)$. Since $C_{A}^{\mathrm{tr}}-C_{A}$ is skew-symmetric, the claim follows by using the normal forms of skewsymmetric matrices.
Example.
Let A be a hereditary algebra. Then A is tame if and only if $\rho_{A}=1$. Moreover, A is of finite representation type if and only if $\rho_{A}=1 \notin$ Spec φ_{A}.

Proposition.

For an accessible algebra A the following conditions are equivalent.
(1) A is derived of Dynkin type.
(2) The Euler quadratic form of A is positive definite.
(3) There exists a sequence of algebras $k=A_{0}, \ldots, A_{s}=A$ such that for each $i \in[1, s], A_{i}=A_{i-1}\left[M_{i-1}\right]$ for an exceptional A_{i-1}-module M_{i-1}, and $\rho_{A}=1 \notin \operatorname{Spec} \varphi_{A}$.

Proof.

We only prove $(3) \Rightarrow(1)$. Assume that A is not derived of Dynkin type and let $k=A_{0}, \ldots, A_{s}=A$ be a sequence of algebras such that for each $i \in[1, s], A_{i}=A_{i-1}\left[M_{i-1}\right]$ for an exceptional A_{i-1}-module
M_{i-1}. Fix $i \in[1, s]$ such that A_{0}, \ldots, A_{i-1} are derived of Dynkin type and A_{i} is not derived of Dynkin type. Then it follows that A_{i} is derived equivalent to $B[P]$ for a projective module P over a hereditary algebra B of Dynkin type. Consequently, A_{i} is derived equivalent to a representation infinite hereditary algebra and the claim follows.

Proposition.

Let A be a canonical algebra of type $\left(m_{1}, \ldots, m_{n}\right)$.
(1) A is accessible if and only if $n=3$.
(2) $\chi_{A}(-1)=4$ if $2 \nmid m_{i}$ for each $i \in[1, m]$, and $\chi_{A}(-1)=0$, otherwise.

Proof.

Since $\operatorname{dim}_{k} \operatorname{HH}^{2}(A)=n-3$, the first part follows. For the second part it is enough to use that

$$
\chi_{A}=(t-1)^{2} \prod_{i \in[1, n]}\left(1+t+\cdots+t^{m_{i}-1}\right)
$$

Proposition.

If A is a representation finite accessible algebra, then Γ_{A} is a preprojective quiver of tree type.

Theorem.

For a representation finite algebra A the following conditions are equivalent.
(1) A is accessible.
(2) A is strongly simply connected.
(3) Γ_{A} is a preprojective quiver of tree type and $\mathrm{HH}^{1}(A)=0$.

Example.
Let A_{n} be the path algebra of the quiver

$$
\underset{\mathbf{i}}{\bullet} \xrightarrow{x} \stackrel{\bullet}{\bullet} \cdots \xrightarrow{x}{ }_{n-1}^{\bullet} \xrightarrow{x}{ }_{n}^{\bullet}
$$

bound by $x^{3}=0$. Then A_{11} is derived equivalent to the canonical algebra of type $(2,3,7)$. This implies that $1=\rho_{A_{12}} \notin \operatorname{Spec} \varphi_{A_{12}}$.

Theorem.

If A is an admissible algebra which is derived representation finite, then

$$
\chi_{A}(-1)= \begin{cases}1 & A \text { has an even number of simple modules }, \\ 0 & A \text { has an odd number of simple modules }\end{cases}
$$

Proof.
We assume that A is representation finite. Let $A=B[M]$ with M exceptional. If M^{\perp} is equivalent to $\bmod C$ for an algebra C, then $\chi_{A}=(1+t) \cdot \chi_{B}+t \cdot \chi_{C}$. Since both B and C are representation finite and accessible, the claim follows by induction.

