ACCESSIBLE ALGEBRAS AND SPECTRAL ANALYSIS

BASED ON THE TALK BY JOSE ANTONIO DE LA PEÑA

Assumption.

Throughout the talk k is a fixed algebraically closed field.

DEFINITION.

A module M over an algebra A is called exceptional if $\operatorname{End}_k(M) = k$ and $\operatorname{Ext}^i_A(M, M) = 0$ for all $i \in \mathbb{N}_+$.

DEFINITION.

We call an algebra A accessible if there exists a sequence of algebras $k = A_0, \ldots, A_s = A$ such that for each $i \in [1, s], A_i = A_{i-1}[M_{i-1}]$ for an exceptional A_{i-1} -module M_{i-1} .

EXAMPLE.

If A is a tree algebra, then A is accessible.

FACT.

If A is an accessible algebra, then A is triangular. In particular, gl. dim $A < \infty$.

FACT.

If A is an accessible algebra, then $\operatorname{HH}^0(A) = k$ and $\operatorname{HH}^i(A) = 0$ for all $i \in \mathbb{N}_+$. It follows immediately by considering Happel long exact sequence of Hochschild cohomolgies.

Fact.

If $d \in \mathbb{N}_+$, then there are only finitely many accessible algebras of dimension d.

FACT.

If A is an accessible algebra, then A is a smooth point of the scheme of algebras, since $HH^3(A) = 0$.

NOTATION.

For an algebra A of finite global dimension we denote by C_A the Cartan matrix of A.

DEFINITION.

For an algebra A of finite global dimension we put $\varphi_A := -C_A^{\text{tr}}C_A$ and call it the Coxeter transformation of A.

Date: 06.05.2008.

NOTATION.

For an algebra A of finite global dimension we put $\chi_A := \det(t \cdot \operatorname{Id} - \varphi_A)$.

NOTATION.

For an algebra A of finite global dimension we denote by Spec φ_A the spectrum of φ_A .

DEFINITION.

For an algebra A of finite global dimension we put $\rho_A := \max\{|\lambda| \mid \lambda \in \text{Spec } \varphi_A\}$ and call it the spectral radius of A.

FACT.

If A is an algebra of finite global dimension, then $[t]\chi_A = 1$.

Proof.

Note that $[t]\chi_A = -\operatorname{Tr} \varphi_A$. Moreover, according to Happel

$$\operatorname{Tr} \varphi_A = -\sum_{i \in \mathbb{N}} (-1)^i \dim_k \operatorname{HH}^i(A),$$

hence the claim follows.

FACT.

If A is an algebra of finite global dimension, then $\chi_A(-1) = m^2$ for some $m \in \mathbb{N}$. Moreover, if A has an odd number of vertices, then $\chi_A(-1) = 0$.

Proof.

Easy calculations show $\chi_A(-1) = \det(C_A^{\text{tr}} - C_A)$. Since $C_A^{\text{tr}} - C_A$ is skew-symmetric, the claim follows by using the normal forms of skew-symmetric matrices.

EXAMPLE.

Let A be a hereditary algebra. Then A is tame if and only if $\rho_A = 1$. Moreover, A is of finite representation type if and only if $\rho_A = 1 \notin$ Spec φ_A .

PROPOSITION.

For an accessible algebra A the following conditions are equivalent.

- (1) A is derived of Dynkin type.
- (2) The Euler quadratic form of A is positive definite.
- (3) There exists a sequence of algebras $k = A_0, \ldots, A_s = A$ such that for each $i \in [1, s], A_i = A_{i-1}[M_{i-1}]$ for an exceptional A_{i-1} -module M_{i-1} , and $\rho_A = 1 \notin \operatorname{Spec} \varphi_A$.

Proof.

We only prove (3) \Rightarrow (1). Assume that A is not derived of Dynkin type and let $k = A_0, \ldots, A_s = A$ be a sequence of algebras such that for each $i \in [1, s], A_i = A_{i-1}[M_{i-1}]$ for an exceptional A_{i-1} -module M_{i-1} . Fix $i \in [1, s]$ such that A_0, \ldots, A_{i-1} are derived of Dynkin type and A_i is not derived of Dynkin type. Then it follows that A_i is derived equivalent to B[P] for a projective module P over a hereditary algebra B of Dynkin type. Consequently, A_i is derived equivalent to a representation infinite hereditary algebra and the claim follows.

PROPOSITION.

Let A be a canonical algebra of type (m_1, \ldots, m_n) .

- (1) A is accessible if and only if n = 3.
- (2) $\chi_A(-1) = 4$ if $2 \nmid m_i$ for each $i \in [1, m]$, and $\chi_A(-1) = 0$, otherwise.

Proof.

Since $\dim_k \operatorname{HH}^2(A) = n - 3$, the first part follows. For the second part it is enough to use that

$$\chi_A = (t-1)^2 \prod_{i \in [1,n]} (1+t+\dots+t^{m_i-1}).$$

PROPOSITION.

If A is a representation finite accessible algebra, then Γ_A is a preprojective quiver of tree type.

THEOREM.

For a representation finite algebra A the following conditions are equivalent.

- (1) A is accessible.
- (2) A is strongly simply connected.
- (3) Γ_A is a preprojective quiver of tree type and $\operatorname{HH}^1(A) = 0$.

EXAMPLE.

Let A_n be the path algebra of the quiver

$$\bullet_1 \xrightarrow{x} \bullet \bullet_2 \xrightarrow{x} \cdots \xrightarrow{x} \bullet \bullet_{n-1} \xrightarrow{x} \bullet_n$$

bound by $x^3 = 0$. Then A_{11} is derived equivalent to the canonical algebra of type (2,3,7). This implies that $1 = \rho_{A_{12}} \notin \operatorname{Spec} \varphi_{A_{12}}$.

THEOREM.

If A is an admissible algebra which is derived representation finite, then

$$\chi_A(-1) = \begin{cases} 1 & A \text{ has an even number of simple modules,} \\ 0 & A \text{ has an odd number of simple modules.} \end{cases}$$

Proof.

We assume that A is representation finite. Let A = B[M] with M exceptional. If M^{\perp} is equivalent to mod C for an algebra C, then $\chi_A = (1+t) \cdot \chi_B + t \cdot \chi_C$. Since both B and C are representation finite and accessible, the claim follows by induction.