# SOME CLASSES OF 2-CALABI-YAU TILTED ALGEBRAS GIVEN BY QUIVERS WITH POTENTIALS 

BASED ON THE TALK BY IDUN REITEN

## Assumption.

Throughout the talk $k$ is a fixed algebraically closed field.

## Definition.

By a quiver with potential we mean a finite quiver $Q$ with together with a $k$-linear combination $W$, called potential, of cyclic paths.

## Notation.

For a quiver $Q$ with a potential $W$ we put

$$
\mathscr{P}(Q, W):=\hat{k Q} /\left\langle\partial_{a} W \mid a \in Q_{1}\right\rangle .
$$

## Definition.

By a Jacobi algebra we mean an algebra of the form $\mathscr{P}(Q, W)$ for a quiver $Q$ with a potential $W$.
Example.
If $Q$ is the quiver

and $W=a b c d$, then $\partial_{a} W=b c d, \partial_{b} W=c d a, \partial_{c} W=d a b$, and $\partial_{d} W=$ $a b c$.

Definition.
We call a Hom-finite triangulated category $\mathscr{C}$ 2-Calabi-Yau if

$$
\operatorname{Ext}_{\mathscr{C}}^{1}(A, B) \simeq D \operatorname{Ext}_{\mathscr{C}}^{1}(B, A)
$$

for all $A, B \in \mathscr{C}$.

## Definition.

An object $T$ of a 2-Calabi-Yau category is called cluster tilting if $\operatorname{Ext}_{\mathscr{C}}^{1}(T, T)=0$ and $X \in \operatorname{add} T$ for each $X \in \mathscr{C}$ such that $\operatorname{Ext}_{\mathscr{C}}^{1}(T, X)=$ 0.

## Definition.

By a 2-Calabi-Yau tilted algebra we mean every algebra of the form $\operatorname{End}_{\mathscr{C}}(T)$ for a cluster tilting object in a 2-Calabi-Yau category $\mathscr{C}$.

## Remark.

Every cluster tilted algebra is a 2-Calabi-Yau tilted algebra.
Theorem (Амiot).
Every finite dimensional Jacobi algebra is a 2-Calabi-Yau tilted algebra.

## Definition.

For a finite quiver $Q$ without loops we denote by $W_{Q}$ the Coxeter group associated with $Q$, i.e. the group generated by $s_{x}, x \in Q_{0}$, such that $s_{x}^{2}=1$ for each $x \in Q_{0}, s_{x} s_{y}=s_{y} s_{x}$ for all $x, y \in Q_{0}$ such that there is no arrow connecting $x$ and $y$, and $s_{x} s_{y} s_{x}=s_{y} s_{x} s_{y}$ for all $x, y \in Q_{0}$ such that there is exactly one arrow connecting $x$ and $y$.

## Definition.

Let $Q$ be a finite quiver without loops. A sequence $\left(x_{1}, \ldots, x_{n}\right) \in Q_{0}^{n}$ is called reduced if there is no sequence $\left(y_{1}, \ldots, y_{m}\right) \in Q_{0}^{m}$ such that $m<n$ and $s_{y_{1}} \cdots s_{y_{m}}=s_{x_{1}} \cdots c_{x_{n}}$.

## Notation.

For a quiver $Q$ without loops we put

$$
\Lambda_{Q}:=k \dot{\bar{Q}} /\left\langle\sum_{a \in Q_{1}} a a^{*}-a^{*} a\right\rangle
$$

where $\bar{Q}$ is the double quiver of $Q$. Moreover, for each $x \in Q_{0}$ we put

$$
I_{x}:=\Lambda_{Q} \cdot\left(1-e_{x}\right) \cdot \Lambda_{Q}
$$

## Notation.

Let $Q$ be a finite quiver without loops. For a reduced sequence $\mathbf{x}=$ $\left(x_{1}, \ldots, x_{n}\right) \in Q_{0}^{n}$ we put

$$
I_{\mathbf{x}}:=I_{x_{1}} \cdots I_{x_{n}} \quad \text { and } \quad \Lambda_{\mathbf{x}}:=\Lambda_{Q} / I_{\mathbf{x}}
$$

Remark.
If $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in Q_{0}^{n}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right) \in Q_{0}^{n}$ are reduced sequences such that $s_{x_{1}} \cdots s_{x_{n}}=s_{y_{1}} \cdots s_{y_{n}}$, then $I_{\mathbf{x}}=I_{\mathbf{y}}$ and, consequently, $\Lambda_{\mathrm{x}}=\Lambda_{\mathrm{y}}$.
Remark.
If $\mathbf{x} \in Q_{0}^{n}$ is a reduced sequence, then $\underline{\operatorname{Sub}} \Lambda_{\mathbf{x}}$ is a 2-Calabi-Yau category.

## Notation.

Let $Q$ be a finite quiver without loops. For a reduced sequence $\mathbf{x}=$ $\left(x_{1}, \ldots, x_{n}\right) \in Q_{0}^{n}$ we put

$$
T_{\mathbf{x}}:=P_{x_{1}} / I_{x_{1}} P_{x_{1}} \oplus \cdots \oplus P_{x_{n}} / I_{x_{1}} \cdots I_{x_{n}} P_{x_{n}}
$$

Remark.
If $\mathbf{x} \in Q_{0}^{n}$ is a reduced sequence, then $T_{\mathbf{x}}$ is cluster tilting object in Sub $\Lambda_{\mathrm{x}}$.

Example.
If $Q$ is the quiver

and $\mathbf{x}=(1,2,1,2)$, then

$$
T_{\mathbf{x}}=1 \bigoplus_{1}^{2}{ }_{1} \bigoplus_{1}^{2}{\underset{1}{2}}_{2}^{1}{ }_{1}{ }_{1}{\underset{1}{2}}_{2}^{2}{\underset{1}{2}}_{2}^{2}
$$

Example.
If $Q$ is the quiver

and $\mathbf{x}=(1,2,1,3,1,2,3,1,2)$, then $\operatorname{End}_{\overline{\operatorname{Sub}} \Lambda_{\mathbf{x}}}\left(T_{\mathbf{x}}\right) \simeq \mathscr{P}\left(Q^{\prime}, W\right)$, where $Q^{\prime}$ is the quiver

and

$$
W:=a a^{*} p_{1} p_{2}-a^{*} a q+b b^{*} q-c^{*} c p_{1} .
$$

