GRADED CENTERS OF SOME TRIANGULATED CATEGORIES

BASED ON THE TALK BY YU YE

ASSUMPTION.

Throughout the talk we consider categories over a fixed field k.

DEFINITION.

For a category \mathscr{A} we define the center $Z(\mathscr{A})$ of \mathscr{A} by

$$Z(\mathscr{A}) := \{\eta : \mathrm{Id}_{\mathscr{A}} \to \mathrm{Id}_{\mathscr{A}}\}.$$

Remark.

If \mathscr{A} is a category, then $Z(\mathscr{A})$ is a commutative ring.

EXAMPLE.

If A is a k-algebra, then Z(Mod A) = Z(mod A) = Z(A).

EXAMPLE.

If A is a k-algebra, then we have an inclusion $Z(A) \hookrightarrow Z(\mathscr{D}^b(\text{mod } A))$, which is an isomorphism provided A is hereditary.

EXAMPLE.

If $A = k[X]/(X^n)$, then $Z(\underline{\text{mod}} A) = k[X]/(X^{\lfloor \frac{n}{2} \rfloor})$.

DEFINITION.

For a triangulated category \mathscr{T} with the suspension functor Σ we define the graded center $Z^*(\mathscr{T}) = Z^*(\mathscr{T}, \Sigma)$ by

$$Z^{n}(\mathscr{T}) := \{ \eta : \mathrm{Id}_{\mathscr{T}} \to \Sigma^{n} \mid \eta \Sigma = (-1)^{n} \Sigma \eta \}$$

for $n \in \mathbb{Z}$.

Remark.

If \mathscr{T} is a category, then $Z^*(\mathscr{T})$ is a graded commutative algebra.

Remark.

The above definition makes sense for an arbitrary category endowed with the shift functor.

Remark.

If \mathscr{T} is a triangulated category, then $Z^0(\mathscr{T}) \subseteq Z(\mathscr{T})$.

Remark.

In general, the graded center of a triangulated category is not a set.

Date: 23.05.2008.

REMARK.

If M is an object of a triangulated category \mathscr{T} , then we have the evaluation map $\varphi_M : Z^*(\mathscr{T}) \to \operatorname{Ext}^*_{\mathscr{T}}(M, M) := \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathscr{T}}(M, \Sigma^n M).$ In particular, if A is an algebra, then we have a ring homomorphism $\operatorname{HH}^*(A) \to \operatorname{Ext}^*_{\mathscr{T}}(M, M).$

Remark.

If \mathscr{S} is a triangulated subcategory of a triangulated category \mathscr{T} , then we have the induced maps $i^*: Z(\mathscr{T}) \to Z(\mathscr{S})$ and $\pi_*: Z(\mathscr{T}) \to \mathcal{S}$ $Z(\mathscr{T}/\mathscr{S})$. It is an open problem if (i^*, π_*) is injective.

NOTATION.

For a full subcategory \mathscr{C} of an abelian category we denote by $\mathscr{K}(\mathscr{C})$ the full subcategory of the homotopy category of complexes over \mathscr{C} formed by all X such that $H_n(X) = 0$ for all but a finite number of $n \in \mathbb{Z}$. By $\mathscr{K}^{-}(\mathscr{C})$ we denote the full subcategory of $\mathscr{K}(\mathscr{C})$ formed by all X such that $X_n = 0$ for all but a finite number of $n \in \mathbb{N}$. We define $\mathscr{K}^+(\mathscr{C})$ dually and we put $\mathscr{K}^b(\mathscr{C}) := \mathscr{K}^-(\mathscr{C}) \cap \mathscr{K}^+(\mathscr{C}).$

NOTATION.

For $n \in \mathbb{Z}$ and a full subcategory \mathscr{C} of an abelian category we denote by ι^n the map which assigns to $X \in \mathscr{K}(\mathscr{C})$ the truncated complex $\iota_n X \in \mathscr{K}^-(\mathscr{C})$. Moreover, for $X \in \mathscr{K}(\mathscr{C})$ we also denote by i_n^X the corresponding inclusion map $\iota_n X \to X$.

LEMMA.

Let $f: X \to Y$ for $X, Y \in \mathscr{K}(\operatorname{proj} \mathscr{A})$ and an abelian category \mathscr{A} . If $n \in \mathbb{Z}$ is such that $H_m(Y) = 0$ for all $m \in [n+1,\infty)$, then f is null-homotopic if and only if $f \circ i_n^X$ is null-homotopic.

Proof.

Let $m \in [n+1,\infty)$ and assume there exist $s_i : X_i \to Y_{i+1}, i \in (-\infty, m-1)$ 1], such that $f_i = s_{i-1}d_i^X + d_{i+1}^Y s_i$ for each $i \in (-\infty, m-1]$. Observe that $d_m^Y(f_m - s_{m-1}d_m^X) = 0$, hence $\operatorname{Im}(f_m - s_{m-1}d_m^X) \subseteq \operatorname{Ker} d_m^Y = \operatorname{Im} d_{m+1}^Y$. Since $X_m \in \operatorname{proj} \mathscr{A}$, there exists $s_m : X_m \to Y_{m+1}$ such that $f_m - C_m^Y$. $s_{m-1}d_m^X = d_{m+1}^Y s_m$, hence the claim follows by obvious induction.

PROPOSITION.

If $\eta \in Z^t(\mathscr{K}^b(\operatorname{proj}\mathscr{A}))$ for an abelian category \mathscr{A} and $t \in \mathbb{Z}$, then there exists unique $\theta \in Z^t(\mathscr{K}^+(\operatorname{proj} \mathscr{A}))$ such that $\eta = i^*\theta$.

THEOREM (KRAUSE/YE).

If \mathscr{A} is an abelian category, then $Z^*(\mathscr{K}^b(\operatorname{proj} \mathscr{A})) \to Z^*(\mathscr{K}^+(\operatorname{proj} \mathscr{A}))$ is an isomorphism.

LEMMA.

If A is a hereditary algebra, then

$$Z^*(\mathscr{D}^b(\operatorname{mod} A)) = Z^0(\mathscr{D}^b(\operatorname{mod} A)) \oplus Z^1(\mathscr{D}^b(\operatorname{mod} A))$$

and

$$Z^0(\mathscr{D}^b(\mathrm{mod}\,A)) = Z(A).$$

PROPOSITION.

If \mathscr{H}_1 and \mathscr{H}_2 are additive subcategories of a hereditary category \mathscr{H} such that $\mathscr{H} = \mathscr{H}_1 \vee \mathscr{H}_2$ and $\operatorname{Hom}_{\mathscr{H}}(\mathscr{H}_2, \mathscr{H}_1) = 0 = \operatorname{Ext}^1_{\mathscr{H}}(\mathscr{H}_1, \mathscr{H}_2)$, then

$$Z^{1}(\mathscr{D}^{b}(\mathscr{H})) \simeq Z^{1}(\mathscr{D}^{b}(\Sigma^{*}\mathscr{H}_{1})) \times Z^{1}(\mathscr{D}^{b}(\Sigma^{*}\mathscr{H}_{2})).$$

PROPOSITION.

If Q is a quiver of Dynkin type, then $Z^*(\mathscr{D}^b(\operatorname{mod} kQ)) \simeq k$.

PROPOSITION.

If Q is a quiver of Euclidean type, then

$$Z^*(\mathscr{D}^b(\operatorname{mod} kQ)) \simeq k \ltimes \left(\prod_{\mathscr{T}_1 \times \mathbb{Z}} k\right),$$

where \mathscr{T}_1 indexes the homogeneous tubes.