JORDAN TYPES AND AR-SEQUENCES: BACKGROUND AND EXAMPLES

BASED ON THE TALK BY ROLF FARNSTEINER

ASSUMPTION.

Throughout the talk k will be an algebraically closed field of positive characteristic p.

Let \mathscr{G} be a finite group scheme (we usually assume that either $\mathscr{G} = kG$ for a finite group G or $\mathscr{G} = \mathscr{U}_0(\mathfrak{g})$ for a restricted Lie algebra \mathfrak{g}). Then \mathscr{G} is a Hopf algebra, hence in particular mod \mathscr{G} has tensor products. Put

$$H^{\circ}(\mathscr{G},k) := \bigoplus_{n \in \mathbb{N}} H^{2n}(\mathscr{G},k).$$

For $M \in \operatorname{mod} \mathscr{G}$ we define $\Phi_M : H^{\circ}(\mathscr{G}, k) \to \operatorname{Ext}^*_{\mathscr{G}}(M, M)$ by $[f] \mapsto [f \otimes M]$. Friedlander and Suslin proved that $H^{\circ}(\mathscr{G}, k)$ is a finitely generated k-algebra and $\operatorname{Ext}^*_{\mathscr{G}}(M, M)$ is a finitely generated $H^{\circ}(\mathscr{G}, k)$ -module for each $M \in \operatorname{mod} \mathscr{G}$. Consequently, for $M \in \operatorname{mod} \mathscr{G}$ we define the support variety $\mathscr{V}_{\mathscr{G}}(M)$ of M as the zero set of Ker Φ_M inside the maximal spectrum of $H^{\circ}(\mathscr{G}, k)$. It is known that $\dim \mathscr{V}_{\mathscr{G}}(M)$ equals the complexity $\operatorname{cx}_{\mathscr{G}}(M)$ of M. If M and N belong to the same component of the stable Auslander–Reiten quiver $\Gamma_s(\mathscr{G})$ of \mathscr{G} , then $\mathscr{V}_{\mathscr{G}}(M) = \mathscr{V}_{\mathscr{G}}(N)$. Consequently, we may define $\mathscr{V}_{\mathscr{G}}(\Theta)$ for a component Θ of $\Gamma_s(\mathscr{G})$. It is known that Θ is a tube provided $\dim \mathscr{V}_{\mathscr{G}}(\Theta) = 1$ and Θ is infinite. Moreover, $\Theta \simeq \mathbb{Z}\mathbb{A}_{\infty}$ if $\dim \mathscr{V}_{\mathscr{G}}(\Theta) \geq 3$.

NOTATION.

For an element x of a Lie algebra \mathfrak{g} we define $\mathrm{ad}_x : \mathfrak{g} \to \mathfrak{g}$ by $\mathrm{ad}_x(y) := [x, y]$ for $y \in \mathfrak{g}$.

DEFINITION.

Let \mathfrak{g} be a Lie algebra. A map $(-)^{[p]} : \mathfrak{g} \to \mathfrak{g}$ is called a *p*-map if the following conditions are satisfied:

- (1) ad $x^{[p]} = (\operatorname{ad} x)^p$ for each $x \in \mathfrak{g}$.
- (2) $(\alpha x)^{[p]} = \alpha^p x^{[p]}$ for each $\alpha \in k$ and $x \in \mathfrak{g}$.
- (3) for each $x, y \in \mathfrak{g}$,

$$(x+y)^{[p]} = x^{[p]} + y^{[p]} + \sum_{i \in [1,p-1]} s_i(x,y),$$

Date: 20.06.2008.

where $s_1(x, y), \ldots, s_{p-1}(x, y)$ are products of length p involving only x and y.

DEFINITION.

By a restricted Lie algebra we mean a Lie algebra \mathfrak{g} together with a p-map $(-)^{[p]} : \mathfrak{g} \to \mathfrak{g}$.

EXAMPLE.

If Λ is an associative algebra, then the map $\Lambda^- \to \Lambda^-$, $x \mapsto x^p$, is a p-map in the commutator algebra Λ^- . Any Lie subalgebra \mathfrak{g} of Λ^- such that $x^p \in \mathfrak{g}$ for each $x \in \mathfrak{g}$ is a restricted Lie algebra. As examples of restricted Lie algebras obtained in this way one gets: $\mathfrak{gl}(n), \mathfrak{sl}(n)$, the algebra $\mathrm{Upp}(n)$ of upper triangular algebras, and the algebra $\mathrm{Upp}^+(n)$ of strictly upper triangular matrices.

Remark.

By Theorem of Jacobson *p*-maps may be defined on a basis of a Lie algebra. Namely, if $(x_i)_{i\in I}$ is a basis of a Lie algebra \mathfrak{g} and $(y_i)_{i\in I}$ are elements of \mathfrak{g} such that $(\operatorname{ad} x_i)^p = \operatorname{ad} y_i$ for each $i \in I$, then there is a unique *p*-map $(-)^{[p]} : \mathfrak{g} \to \mathfrak{g}$ such that $x_i^{[p]} = y_i$ for each $i \in I$.

DEFINITION.

For a restricted Lie algebra ${\mathfrak g}$ we define the restricted enveloping algebra by

 $\mathscr{U}_{0}(\mathfrak{g}) := \mathscr{U}(\mathfrak{g})/(x^{p} - x^{[p]} \mid x \in \mathfrak{g}),$

where $\mathscr{U}(\mathfrak{g})$ is the universal enveloping algebra of \mathfrak{g} .

Remark.

Let $\iota : \mathfrak{g} \to \mathscr{U}_0(\mathfrak{g})$ be the canonical map. If (x_1, \ldots, x_n) is a basis of \mathfrak{g} , then

$$(\iota(x_1)^{a_1}\cdots\iota(x_n)^{a_n} \mid a_1,\ldots,a_n \in [0,p-1])$$

is a basis of $\mathscr{U}_0(\mathfrak{g})$. In particular, ι is injective and \mathfrak{g} is a restricted subalgebra of $\mathscr{U}_0(\mathfrak{g})^-$. Moreover, if \mathfrak{h} is a restricted subalgebra of \mathfrak{g} , then $\mathscr{U}_0(\mathfrak{h})$ is a subalgebra of $\mathscr{U}_0(\mathfrak{g})$ and $\mathscr{U}_0(\mathfrak{g})$ is a free left and right $\mathscr{U}_0(\mathfrak{h})$ -module.

EXAMPLE.

Let \mathfrak{h} be the Heisenberg algebra, i.e. $\mathfrak{h} = kx \oplus ky \oplus kz$, [x, y] = z, and [x, z] = 0 = [y, z] (in other words \mathfrak{h} is the algebra of 3×3 upper triangular matrices). Each of the following formulas define a *p*-map on \mathfrak{h} :

(1)
$$x^{[p]} = y^{[p]} = z^{[p]} = 0.$$

- (2) $x^{[p]} = z = y^{[p]}$ and $z^{[p]} = 0$.
- (3) $x^{[p]} = 0 = y^{[p]}$ and $z^{[p]} = z$.

In the first two cases $\mathscr{U}_0(\mathfrak{h})$ is local, while in the last case $\mathscr{U}_0(\mathfrak{h})$ has *p*-blocks.

DEFINITION.

For a restricted Lie algebra \mathfrak{g} we define the null cone $\mathscr{V}_{\mathfrak{g}}$ by

$$\mathscr{V}_{\mathfrak{g}} := \{ x \in \mathfrak{g} \mid x^{[p]} = 0 \}.$$

If M is a $\mathscr{U}_0(\mathfrak{g})$ -module, then the rank variety $\mathscr{V}_{\mathfrak{g}}(M)$ of M is defined by

$$\mathscr{V}_{\mathfrak{g}}(M) := \{ x \in \mathscr{V}_{\mathfrak{g}} \mid M|_{k[x]} \text{ is not projective} \} \cup \{ 0 \}.$$

THEOREM (JANTZEN/FRIEDLANDER/PARSHALL).

If M is a $\mathscr{U}_0(\mathfrak{g})$ -module for a restricted Lie algebra \mathfrak{g} , then $\mathscr{V}_{\mathfrak{g}}(M)$ is homeomorphic with the support variety of M.

EXAMPLE.

If $p \geq 3$, then

$$\mathscr{V}_{\mathfrak{sl}(2)} = \left\{ \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \mid a^2 + bc = 0 \right\}.$$

DEFINITION.

Let \mathscr{G} be a finite group scheme and $\mathfrak{A} := k[T]/T^p$. For a homorphism $\alpha : \mathfrak{A} \to \mathscr{G}$ we denote by α^* the pull-back functor $\operatorname{mod} \mathscr{G} \to \operatorname{mod} \mathfrak{A}$. A homomorphism $\alpha : \mathfrak{A} \to \mathscr{G}$ is called a *p*-point if $\alpha^*(\mathscr{G})$ is a projective \mathfrak{A} -module and there exists a unipotent abelian subgroup \mathscr{U} of \mathscr{G} such that $\operatorname{Im} \alpha \subseteq \mathscr{U}$. Two *p*-points α and β are said to be equivalent if for each $M \in \operatorname{mod} \mathscr{G}, \alpha^*(M)$ is projective if and only if $\beta^*(M)$ is projective. We denote by $P(\mathscr{G})$ the set of equivalences classes of *p*-points. Finally, for $M \in \operatorname{mod} \mathscr{G}$ we define the *p*-support $P(\mathscr{G})_M$ of M by

$$P(\mathscr{G})_M := \{ [\alpha] \mid \alpha^*(M) \text{ is not projective} \}.$$

THEOREM (FRIEDLANDER/PEVTSOVA).

Let \mathscr{G} be a finite group scheme.

- (1) The sets $\{P(\mathscr{G})_M \mid M \in \text{mod}\,\mathscr{G}\}\$ give a structure of a noetherian topological space on $P(\mathscr{G})$ as the closed subsets.
- (2) There exists a homeomorphism $\psi_{\mathscr{G}} : P(\mathscr{G}) \to \operatorname{Proj}(\mathscr{V}_{\mathscr{G}}(k))$ such that $\psi_{\mathscr{G}}(P(\mathscr{G})_M) = \operatorname{Proj}(\mathscr{V}_{\mathscr{G}}(M))$ for each $M \in \operatorname{mod} \mathscr{G}$.

DEFINITION.

Let \mathscr{G} be a finite group scheme. For $M \in \operatorname{mod} \mathscr{G}$ we define the set $\operatorname{Jt}(M)$ of Jordan types of M as the set of isomorphism classes of $\alpha^*(M)$ for p-points α . We say that $M \in \operatorname{mod} \mathscr{G}$ is of constant Jordan type if $\operatorname{Jt}(M)$ is a singleton.

NOTATION.

For each $i \in [1, p]$ we denote by [i] the isomorphism class of the indecomposable \mathfrak{A} -module of dimension i.

REMARK.

A module M over a finite group scheme \mathscr{G} is projective if and only if $Jt(M) = \{n[p]\}$ for some $n \in \mathbb{N}$.

Remark.

For modules M and N over a finite group scheme \mathscr{G} , $\operatorname{Hom}_k(M, N)$ has a structure of a \mathscr{G} -module.

DEFINITION.

A module M over a finite group scheme is called endo-trivial if $\operatorname{End}_k(M)$ is a direct sum of the trivial \mathscr{G} -module and a projective \mathscr{G} -module.

PROPOSITION.

Let Θ be a component of $\Gamma_s(\mathfrak{sl}(2))$.

(1) If $\dim_k P(\mathfrak{sl}(2))_{\Theta} = 1$, then every M in Θ has constant Jordan type. Moreover, there exists $s(\Theta) \in [1, p-1]$ such that

$$\operatorname{Jt}(M) = \left\{ [s(\Theta)] \oplus \frac{\dim_k M - s(\Theta)}{p} [p] \right\}$$

for each $M \in \Theta$.

(2) If $\dim_k P(\mathfrak{sl}(2))_{\Theta} = 0$, then Θ is a tube and there exists $i(\Theta) \in [1, \frac{p-1}{2}]$ such that

 $\operatorname{Jt}(M) = \{\operatorname{ql}(M)[p], [i(\Theta)] \oplus [p - i(\Theta)] \oplus (\operatorname{ql}(M) - 1)[p]\}.$ for each $M \in \Theta$.