GORENSTEIN HOMOLOGICAL ALGEBRA

BASED ON THE TALK BY PU ZHANG

DEFINITION.

Let \mathscr{X} be a full subcategory of Mod R for a ring R. An exact sequence ε is called $\operatorname{Hom}_R(\mathscr{X}, -)$ -exact ($\operatorname{Hom}_R(-, \mathscr{X})$ -exact, respectively) if the sequence $\operatorname{Hom}_R(\varepsilon, X)$ ($\operatorname{Hom}_R(X, \varepsilon)$, respectively) is exact for each $X \in \mathscr{X}$.

DEFINITION.

Let R be a ring. Every $\operatorname{Hom}_R(-, \operatorname{Proj} R)$ -exact sequence

 $P^{\circ}:\cdots \to P^{-1} \to P^0 \to P^1 \to \cdots$

of projective R-modules is called a complete projective resolution.

DEFINITION.

Let R be a ring. An R-module M is called a Gorenstein projective module if there exists a complete projective resolution P° such that $\operatorname{Im} d_P^{-1} = M$.

NOTATION.

For a ring R we denote by GProj R the full subcategory of Mod R formed by the Gorenstein projective modules.

FACT.

If A is selfinjective, then $\operatorname{GProj} A = \operatorname{Mod} A$.

FACT.

Let R be a ring. If P° is a complete projective resolution, then $\operatorname{Im} d_P^i \in \operatorname{GProj} R$ for each $i \in \mathbb{Z}$. Moreover, for each $i \in \mathbb{Z}$ the sequences

$$0 \to \operatorname{Im} d_P^i \to P^{i+1} \to P^{i+2} \to \cdots$$

and

$$\cdots \to P^{i-1} \to P^i \to \operatorname{Im} d_P^i \to 0$$

are $\operatorname{Hom}_R(-, \operatorname{Proj} R)$ -exact. Finally, for all $i, j \in \mathbb{Z}$, such that $i \leq j$, the sequence

$$0 \to \operatorname{Im} d_P^i \to P^{i+1} \to \cdots \to P^j \to \operatorname{Im} d_P^j \to 0$$

are $\operatorname{Hom}_R(-, \operatorname{Proj} R)$ -exact.

Date: 16.07.2008.

NOTATION.

Let R be a ring. For a subcategory \mathscr{X} of Mod R we put

$${}^{\perp}\mathscr{X} := \{ M \in \operatorname{Mod} R \;$$

$$| \operatorname{Ext}_{R}^{i}(M, X) = 0 \text{ for each } M \in \mathscr{X} \text{ and } i \in \mathbb{N}_{+} \}.$$

Similarly we define \mathscr{X}^{\perp} .

FACT.

Let R be a ring. If $M \in \operatorname{GProj} R$, then $M \in {}^{\perp} \mathscr{P}$, where \mathscr{P} denotes the full category of Mod R formed by the modules of finite projective dimension.

Fact.

Let $M \in \text{Mod } R$ for a ring R. Then $M \in \text{GProj } R$ if and only if $M \in {}^{\perp}(\text{Proj } R)$ and M has a right projective resolution which is $\text{Hom}_R(-, \text{Proj } R)$ -exact.

FACT.

If $M \in \operatorname{GProj} R$ for a ring R, then $\operatorname{pd}_R M \in \{0, \infty\}$.

FACT.

The category GProj R is closed under extensions, the kernels of epimorphism, direct summands, and (arbitrary) direct sums.

DEFINITION.

Let R be a ring. By a proper Gorenstein projective resolution of $M \in Mod R$ we mean a $Hom_R(GProj R, -)$ -exact sequence

$$\cdots \to G_1 \to G_0 \to M \to 0$$

such that $G_i \in \operatorname{GProj} R$ for each $i \in \mathbb{N}$.

DEFINITION.

Let R a ring. We say that $M \in \text{Mod} R$ has a finite Gorenstein projective dimension if there exists an exact sequence

$$0 \to G_n \dots \to G_0 \to M \to 0$$

such that $G_0, \ldots, G_n \in \operatorname{GProj} R$.

THEOREM (AUSLANDER/BUCHWEITZ).

Let R be a ring and $M \in \text{Mod } R$. If M has a finite Gorenstein projective dimension, then M has a proper Gorenstein projective resolution.

THEOREM (JØRGENSEN).

If A is finite dimensional k-algebra, then every module has a proper Gorenstein projective resolution.

DEFINITION.

Let $n \in \mathbb{N}$. A ring R is called n-Gorenstein if it is left and right noetherian, and the injective dimension of R (both as a left and a right module) is at most n.

THEOREM (IWANAGA).

Let R be an n-Gorenstein ring. The following conditions are equivalent for an R-module M:

- (1) id $M < \infty$.
- (2) id $M \leq n$.
- (3) $\operatorname{pd} M < \infty$.
- (4) $\operatorname{pd} M \leq n$.
- (5) The flat dimension of M is finite.
- (6) The flat dimension of M is at most n.

THEOREM.

If R is an n-Gorenstein ring, then $\operatorname{GProj} R = {}^{\perp}(\operatorname{Proj} R)$.

THEOREM.

If R is an n-Gorenstein ring, then every $M \in \text{Mod } R$ has a finite Gorenstein projective dimension. Consequently, every $M \in \text{Mod } R$ has a proper Gorenstein projective resolution.

THEOREM (CHIN/ZHANG).

If A is a Gorenstein algebra and T is a generalized tilting module, then the category $\mathscr{D}^b(\operatorname{mod} A)/\mathscr{K}^b(\operatorname{add} T)$ is equivalent to ${}^{\perp}T \cap T^{\perp}$ modulo the ideal of maps which factors through add T.