AUSLANDER-REITEN COMPONENTS CONTAINING RELATIVELY PROJECTIVE MODULES

BASED ON THE TALK BY ROLF FARNSTEINER

Assumption.

Throughout the talk k will be an algebraically closed field of positive characteristic p and G a finite group. Moreover, $\mathfrak{A}_p := k[T]/T^p$.

DEFINITION.

By a p-point we mean every algebra homomorphism $\alpha:\mathfrak{A}_p\to kG$ such that

- (1) $\alpha^*(kG)$ is projective, where $\alpha^* : \mod kG \to \mod \mathfrak{A}_p$ is the functor induced by α ,
- (2) there exists an abelian *p*-subgroup *P* of *G* such that $\operatorname{Im} \alpha \subseteq kP$.

We call two *p*-points α and β equivalent if $\alpha^*(M)$ is projective if and only if $\beta^*(M)$ is projective for each kG-module M. By P(G) we denote the space of the equivalence classes of *p*-points. For $M \in \text{mod } kG$ we define the *p*-support $P(G)_M$ of M by

$$P(G)_M := \{ [\alpha] \in P(G) \mid \alpha^*(M) \text{ is not projective} \}.$$

If M is a kG-module, α is a p-point, and $i \in [1, p]$, then by $\alpha_i(M)$ we denote the multiplicity of the i-dimensional indecomposable \mathfrak{A}_p -module [i] as a direct summand of $\alpha^*(M)$.

LEMMA.

If α is a *p*-point and $i \in [1, p-1]$, then $\alpha_i(\tau_G M) = \alpha_i(M)$ for each $M \in \mod kG$.

Proof.

Since kG is a symmetric algebra, $\tau_G = \Omega_G^2$. Moreover, $\Omega_{\mathfrak{A}_p}^2$ is the identity on the non-projective \mathfrak{A}_p -modules. Finally, if P is a minimal projective resolution of $M \in \mod kG$, then $\alpha^*(P)$ is a projective resolution of $\alpha^*(M)$. Consequently, $\Omega_{\mathfrak{A}_p}^n(\alpha^*(M)) \simeq \alpha^*(\Omega_G^n(M))$ for each $M \in \mod kG$ and $n \in \mathbb{N}$, hence the claim follows.

DEFINITION.

Let α be a *p*-point. We say that $M \in \text{mod } kG$ is relatively α -projective if M is a direct summand of $kG \otimes_{\mathfrak{A}_p} \alpha^*(M)$.

Date: 26.09.2008.

NOTATION.

For a non-projective indecomposable kG-module M we denote by

 $\mathscr{E}_M: 0 \to \tau_G M \to E_M \xrightarrow{\pi_M} M \to 0$

the almost split sequence terminating at M.

LEMMA.

Let α be a *p*-point and *M* a non-projective indecomposable *kG*-module.

- (1) M is relatively α -projective if and only if M is a direct summand of $kG \otimes_{\mathfrak{A}_p} [i]$ for some $i \in [1, p-1]$ such that $\alpha_i(M) \neq 0$.
- (2) If M is relatively α -projective, then $P(M)_G = \{ [\alpha] \}.$
- (3) M is relatively α -projective if and only if $\alpha^*(\mathscr{E}_M)$ does not split.

Proof.

(3) Assume that M is not relatively α -projective. We show that $\alpha^*(\mathscr{E}_M)$ splits. Let $\mu : kG \otimes_{\mathfrak{A}_p} \alpha^*(M) \to M$ be the canonical map: $\mu(a \otimes m) := am$ for $a \in kG$ and $m \in M$. Since M is not relatively α -projective, there exists $\omega : kG \otimes_{\mathfrak{A}_p} \alpha^*(M) \to E_M$ such that $\mu = \pi_M \circ \omega$. By the isomorphism

$$\operatorname{Hom}_{kG}(kG \otimes_{\mathfrak{A}_n} \alpha^*(M), Z) \simeq \operatorname{Hom}_{\mathfrak{A}_n}(\alpha^*(M), \alpha^*(Z))$$

functorial in $Z \in \text{mod} kG$, there exists a map $\tilde{\omega} : \alpha^*(M) \to \alpha^*(E_M)$ such that $\alpha^*(\pi_M) \circ \tilde{\omega} = \text{Id}_{\alpha^*(M)}$, and the claim follows.

DEFINITION.

A component Θ of $\Gamma_s(G)$ is called α -split for a *p*-point α if $\alpha^*(\mathscr{E}_M)$ splits for all $M \in \Theta$. A component Θ of $\Gamma_s(G)$ is called *p*-split if Θ is α -split for each *p*-point α .

PROPOSITION.

Let Θ be a component of $\Gamma_s(G)$ and α a *p*-point. If Θ is not α -split, then Θ is either finite or a tube.

PROPOSITION.

Let α be a *p*-point and Θ be a tube in $\Gamma_s(G)$ such that ql(N) = 1for each $N \in \Theta$ which is relative α -projective. Then there exist $n, n_1, \ldots, n_p \in \mathbb{N}$ such that

$$\alpha_i(X) = \left(n - \sum_{j \in [1, p-1]} a_{i,j} n_j\right) ql(X) + \sum_{j \in [1, p-1]} a_{i,j} n_j$$

for each $X \in \Theta$, where $(a_{i,j})$ is the Cartan martix of type A_{p-1} .