ON TRIANGULATED CATEGORIES AND ENVELOPING ALGEBRAS

BASED ON THE TALK BY FAN XU

Assumption.

Throughout the talk \mathbb{F}_{q} is a fixed finite field. All considered categories are additive over \mathbb{F}_{q}.

Definition.

An abelian category \mathscr{A} is called finitary if $\left|\operatorname{Ext}_{\mathscr{A}}^{n}(X, Y)\right|<\infty$ for all objects X and Y of \mathscr{A}. Similarly, a triangulated category \mathscr{T} is called finitary if $\left|\operatorname{Hom}_{\mathscr{T}}(X, Y)\right|<\infty$ for all objects X and Y of \mathscr{T}.

Definition.

Let \mathscr{A} be a small finitary abelian category. For objects X, Y, and L of \mathscr{A} we put

$$
W(X, Y ; L):=\{(f, g) \mid 0 \rightarrow X \xrightarrow{f} L \xrightarrow{g} Y \rightarrow 0\} .
$$

Then $\operatorname{Aut}(X) \times \operatorname{Aut}(Y)$ acts on $W(X, Y ; L)$ and we denote by $F_{X, Y}^{L}$ the number of orbits with respect to this action. Let \mathscr{H} be the \mathbb{Q}-vector space whose basis is formed by the isoclasses of the objects of \mathscr{A}. We define the multiplication in \mathscr{H} by

$$
[Y] \cdot[X]:=\sum_{[L]} F_{X, Y}^{L}[L] .
$$

Since

$$
\sum_{[L]} F_{X, Y}^{L} \cdot F_{Z, L}^{M}=\sum_{[L]} F_{L, Y}^{M} \cdot F_{Z, X}^{L}
$$

for each object M of \mathscr{A}, this multiplication is associative.

Definition.

Let \mathscr{T} be a finitary Krull-Schmidt triangulated category such that $\operatorname{Hom}_{\mathscr{T}}(X[i], Y)=0$ for all objects X and Y of \mathscr{T} and $i \gg 0$. For objects X, Y, and L of \mathscr{T} we denote by $\operatorname{Hom}_{\mathscr{T}}(X, L)_{Y}$ the set of $f \in \operatorname{Hom}_{\mathscr{T}}(X, L)$ such that the cone of f is isomorphic to Y, and we put

$$
g_{X, Y}^{L}:=\frac{\left|\operatorname{Hom}_{\mathscr{T}}(X, L)_{Y}\right|}{|\operatorname{Aut}(X)|} \cdot \frac{\prod_{i \in \mathbb{N}_{+}}\left|\operatorname{Hom}_{\mathscr{T}}(X[i], L)\right|^{(-1)^{i}}}{\prod_{i \in \mathbb{N}_{+}}\left|\operatorname{Hom}_{\mathscr{T}}(X[i], X)\right|^{(-1)^{i}}}
$$

(the above formula is called Toen formula). Let \mathscr{H} be the \mathbb{Q}-vector space whose basis is formed by the isoclasses of the objects of \mathscr{T}. We define the multiplication in \mathscr{H} by

$$
[Y] \cdot[X]:=\sum_{[L]} g_{X, Y}^{L}[L]
$$

Since

$$
\sum_{[L]} g_{X, Y}^{L} \cdot g_{Z, L}^{M}=\sum_{[L]} g_{L, Y}^{M} g_{Z, X}^{L}
$$

for each object M of \mathscr{T}, this multiplication is associative.

Definition.

Let \mathscr{T} be a finitary Krull-Schmidt triangulated category such that $T^{2}=$ Id. For objects X, Y, and L of \mathscr{A} we put

$$
W(X, Y ; L):=\{(f, g) \mid 0 \rightarrow X \xrightarrow{f} L \xrightarrow{g} Y \rightarrow 0\} .
$$

Then $\operatorname{Aut}(X) \times \operatorname{Aut}(Y)$ acts on $W(X, Y ; L)$ and we denote by $F_{X, Y}^{L}$ the number of orbits with respect to this action. Let \mathscr{H} be the free $\mathbb{Z} /(q-1)$-module space whose basis is formed by the isoclasses of the objects of \mathscr{T}, and let \mathscr{H}^{\prime} be the direct sum of \mathscr{H} and the Grothendieck group of \mathscr{T} tensored with $\mathbb{Z} /(q-1)$. Peng and Xiao defined the Lie bracket in \mathscr{H}^{\prime} by

$$
[[X],[Y]]:= \begin{cases}\sum_{[L]}\left(F_{Y, X}^{L}-F_{X, Y}^{L}\right)[L] & X \not 千 Y[1], \\ \frac{\operatorname{dim} X}{d(X)} & X \simeq Y[1],\end{cases}
$$

where $d(X)$ is the dimension of $\operatorname{End}_{\mathscr{T}}(X) / \operatorname{rad}_{\operatorname{End}}^{\mathscr{T}}(X)$. The above Lie bracket satisfies Jacobi identity. One may also define

$$
g_{X, Y}^{L}:= \begin{cases}\frac{\left|\operatorname{Hom}_{\mathscr{G}}(X, L)_{Y}\right|}{|\operatorname{Aut}(X)|} & X \nsim L \oplus Y[1], \\ |\operatorname{Hom}(L, Y[1])| \frac{\left|\operatorname{Hom}(X, L)_{Y}\right|}{|\operatorname{Aut}(X)|} & X \simeq L \oplus Y[1]\end{cases}
$$

for objects X, Y, and L of \mathscr{T}. Then in $\mathbb{Z}\left[\frac{1}{q}\right] /(q-1) \simeq \mathbb{Z} /(q-1)$

$$
\sum_{[L]} g_{X, Y}^{L} \cdot g_{Z, L}^{M}=\sum_{[L]} g_{L, Y}^{M} \cdot g_{Z, X}^{L}
$$

for each object M of \mathscr{T}.

