ON TRIANGULATED CATEGORIES AND ENVELOPING ALGEBRAS

BASED ON THE TALK BY FAN XU

Assumption.

Throughout the talk \mathbb{F}_q is a fixed finite field. All considered categories are additive over \mathbb{F}_q .

DEFINITION.

An abelian category \mathscr{A} is called finitary if $|\operatorname{Ext}^n_{\mathscr{A}}(X,Y)| < \infty$ for all objects X and Y of \mathscr{A} . Similarly, a triangulated category \mathscr{T} is called finitary if $|\operatorname{Hom}_{\mathscr{T}}(X,Y)| < \infty$ for all objects X and Y of \mathscr{T} .

DEFINITION.

Let \mathscr{A} be a small finitary abelian category. For objects X, Y, and L of \mathscr{A} we put

$$W(X,Y;L) := \{ (f,g) \mid 0 \to X \xrightarrow{f} L \xrightarrow{g} Y \to 0 \}.$$

Then $\operatorname{Aut}(X) \times \operatorname{Aut}(Y)$ acts on W(X, Y; L) and we denote by $F_{X,Y}^L$ the number of orbits with respect to this action. Let \mathscr{H} be the Q-vector space whose basis is formed by the isoclasses of the objects of \mathscr{A} . We define the multiplication in \mathscr{H} by

$$[Y] \cdot [X] := \sum_{[L]} F_{X,Y}^L[L].$$

Since

$$\sum_{[L]} F_{X,Y}^L \cdot F_{Z,L}^M = \sum_{[L]} F_{L,Y}^M \cdot F_{Z,X}^L$$

for each object M of \mathscr{A} , this multiplication is associative.

DEFINITION.

Let \mathscr{T} be a finitary Krull–Schmidt triangulated category such that Hom_{\mathscr{T}}(X[i], Y) = 0 for all objects X and Y of \mathscr{T} and $i \gg 0$. For objects X, Y, and L of \mathscr{T} we denote by Hom_{\mathscr{T}} $(X, L)_Y$ the set of $f \in \operatorname{Hom}_{\mathscr{T}}(X, L)$ such that the cone of f is isomorphic to Y, and we put

$$g_{X,Y}^{L} := \frac{|\operatorname{Hom}_{\mathscr{T}}(X,L)_{Y}|}{|\operatorname{Aut}(X)|} \cdot \frac{\prod_{i \in \mathbb{N}_{+}} |\operatorname{Hom}_{\mathscr{T}}(X[i],L)|^{(-1)^{i}}}{\prod_{i \in \mathbb{N}_{+}} |\operatorname{Hom}_{\mathscr{T}}(X[i],X)|^{(-1)^{i}}}$$

Date: 07.11.2008.

(the above formula is called Toen formula). Let \mathscr{H} be the \mathbb{Q} -vector space whose basis is formed by the isoclasses of the objects of \mathscr{T} . We define the multiplication in \mathscr{H} by

$$[Y] \cdot [X] := \sum_{[L]} g_{X,Y}^L[L].$$

Since

$$\sum_{[L]} g^{L}_{X,Y} \cdot g^{M}_{Z,L} = \sum_{[L]} g^{M}_{L,Y} g^{L}_{Z,X}$$

for each object M of \mathscr{T} , this multiplication is associative.

DEFINITION.

Let \mathscr{T} be a finitary Krull–Schmidt triangulated category such that $T^2 = \text{Id.}$ For objects X, Y, and L of \mathscr{A} we put

$$W(X,Y;L) := \{ (f,g) \mid 0 \to X \xrightarrow{f} L \xrightarrow{g} Y \to 0 \}.$$

Then $\operatorname{Aut}(X) \times \operatorname{Aut}(Y)$ acts on W(X, Y; L) and we denote by $F_{X,Y}^L$ the number of orbits with respect to this action. Let \mathscr{H} be the free $\mathbb{Z}/(q-1)$ -module space whose basis is formed by the isoclasses of the objects of \mathscr{T} , and let \mathscr{H}' be the direct sum of \mathscr{H} and the Grothendieck group of \mathscr{T} tensored with $\mathbb{Z}/(q-1)$. Peng and Xiao defined the Lie bracket in \mathscr{H}' by

$$[[X], [Y]] := \begin{cases} \sum_{[L]} (F_{Y,X}^L - F_{X,Y}^L)[L] & X \not\simeq Y[1], \\ \frac{\dim X}{d(X)} & X \simeq Y[1], \end{cases}$$

where d(X) is the dimension of $\operatorname{End}_{\mathscr{T}}(X)/\operatorname{rad}\operatorname{End}_{\mathscr{T}}(X)$. The above Lie bracket satisfies Jacobi identity. One may also define

$$g_{X,Y}^{L} := \begin{cases} \frac{|\operatorname{Hom}_{\mathscr{T}}(X,L)_{Y}|}{|\operatorname{Aut}(X)|} & X \not\simeq L \oplus Y[1], \\ |\operatorname{Hom}_{\mathscr{T}}(L,Y[1])| \frac{|\operatorname{Hom}(X,L)_{Y}|}{|\operatorname{Aut}(X)|} & X \simeq L \oplus Y[1] \end{cases}$$

for objects X, Y, and L of \mathscr{T} . Then in $\mathbb{Z}[\frac{1}{q}]/(q-1) \simeq \mathbb{Z}/(q-1)$

$$\sum_{[L]} g_{X,Y}^{L} \cdot g_{Z,L}^{M} = \sum_{[L]} g_{L,Y}^{M} \cdot g_{Z,X}^{L}$$

for each object M of \mathscr{T} .