QUANTISED BORCHERDS ALGEBRAS AND HALL ALGEBRAS

BASED ON THE TALK BY DIETER VOSSIECK

Assumption.

Throughout the talk Γ will be a fixed finite quiver without oriented cycles and k a fixed finite field of cardinality q. Moreover, by ind Γ we denote a set of chosen representatives of the isomorphism classes of representations of Γ over q.

DEFINITION.

Put

$$\mathscr{H} := \mathbb{R} \operatorname{ind} \Gamma$$

Observe that

$$\mathscr{H} = \bigoplus_{\alpha \in \mathbb{N}\Gamma_0} \mathscr{H}_{\alpha},$$

where

$$\mathscr{H}_{\alpha} := \mathbb{R}\{A \in \operatorname{ind} \Gamma \mid \operatorname{\mathbf{dim}} A = \alpha\}$$

In ${\mathscr H}$ we introduce the multiplication by

$$A \cdot B = q^{\langle \dim A, \dim B \rangle/2} \cdot \Big(\sum_{C \in \operatorname{ind} \Gamma} g_{A,B}^C \cdot C\Big),$$

where

$$g_{A,B}^C := \#\{X \subseteq C \mid C/X \simeq A \text{ and } X \simeq B\}$$

and $\langle -,-\rangle$ is the Euler homological form.

In \mathscr{H} we also have the comultiplication $\delta: \mathscr{H} \to \mathscr{H} \otimes \mathscr{H}$ defined by

$$\delta(A) := \sum_{B,C \in \operatorname{ind} \Gamma} q^{\langle \operatorname{\mathbf{dim}} B, \operatorname{\mathbf{dim}} C \rangle} \cdot g_{B,C}^{A} \cdot \frac{|\operatorname{Aut} B| \cdot |\operatorname{Aut} C|}{|\operatorname{Aut} A|} \cdot (B \otimes C),$$

which is coassociative and have the counit $\varepsilon : \mathscr{H} \to \mathbb{R}$ given by

$$\varepsilon(A) := \begin{cases} 1 & A \simeq 0, \\ 0 & A \not\simeq 0. \end{cases}$$

Moreover, if we define the multiplication in $\mathscr{H} \otimes \mathscr{H}$ by

$$(A \otimes B) \cdot (C \otimes D) := q^{(\dim B, \dim C)/2} \cdot ((A \cdot C) \otimes (B \cdot D)),$$

where

$$(\alpha,\beta) := \langle \alpha,\beta \rangle + \langle \beta,\alpha \rangle,$$

then δ becomes a homomorphism of algebras.

Date: 19.12.2008.

Next, if we define the symmetric pairing $\mathscr{H}\times\mathscr{H}\to\mathbb{R}$ by

$$(A \mid B) := \begin{cases} \frac{1}{|\operatorname{Aut} A|} & A \simeq B, \\ 0 & A \not\simeq B, \end{cases}$$

then

$$(A \mid B \cdot C) = (\delta(A) \mid B \otimes C),$$

where

$$(B'\otimes C'\mid B''\otimes C''):=(B'\mid B'')\cdot (C'\mid C'')$$

For $\alpha \in \mathbb{N}\Gamma_0$, $\alpha \neq 0$, let \mathscr{H}'_{α} be the orthogonal complement in \mathscr{H}_{α} of $\sum \mathscr{H}_{\beta} \cdot \mathscr{H}_{\gamma}$ (with respect to the above pairing), where the sum runs over all $\beta, \gamma \in \mathbb{N}\Gamma_0$, $\beta, \gamma \neq 0$, such that $\beta + \gamma = \alpha$. Choose an orthonormal basis $(\theta_i)_{i \in I_{\alpha}}$ in \mathscr{H}'_{α} . Let I be the disjoint union of all I_{α} . For $i, j \in I$ we put

$$(i,j) := (\alpha,\beta)$$

provided $i \in I_{\alpha}$ and $j \in I_{\beta}$.

Let \mathscr{U}_+ be the \mathbb{R} -algebra generated by $E_i, i \in I$, and relations

$$E_i \cdot E_j - E_j \cdot E_i = 0$$

for $i, j \in I$ such that (i, j) = 0, and

$$\sum_{l \in [0,1-(i,j)]} (-1)^l \cdot \left\{ \begin{array}{c} 1 - (i,j) \\ i \end{array} \right\} \cdot E_i^l \cdot E_j \cdot E_i^{1-(i,j)-l} = 0$$

for $i, j \in I$ such that (i, i) = 2, where

$$\{n\} := \frac{q^{n/2} - q^{-n/2}}{q^{1/2} - q^{-1/2}},$$
$$\{n\}! := \begin{cases} 1 & n = 0, \\ \{1\} \cdot \ldots \cdot \{n\} & n > 0, \end{cases}$$

and

$$\binom{n}{k} := \frac{\{n\}!}{\{k\}! \cdot \{n-k\}!}$$

THEOREM.

The map $\mathscr{U}_+ \to \mathscr{H}$ given by $E_i \mapsto \theta_i, i \in I$, is an isomorphism of algebras.