QUANTISED BORCHERDS ALGEBRAS AND HALL ALGEBRAS

BASED ON THE TALK BY DIETER VOSSIECK

Assumption.

Throughout the talk Γ will be a fixed finite quiver without oriented cycles and k a fixed finite field of cardinality q. Moreover, by ind Γ we denote a set of chosen representatives of the isomorphism classes of representations of Γ over q.

Definition.

Put

$$
\mathscr{H}:=\mathbb{R} \text { ind } \Gamma
$$

Observe that

$$
\mathscr{H}=\bigoplus_{\alpha \in \mathbb{N} \Gamma_{0}} \mathscr{H}_{\alpha}
$$

where

$$
\mathscr{H}_{\alpha}:=\mathbb{R}\{A \in \operatorname{ind} \Gamma \mid \operatorname{dim} A=\alpha\} .
$$

In \mathscr{H} we introduce the multiplication by

$$
A \cdot B=q^{\langle\operatorname{dim} A, \operatorname{dim} B\rangle / 2} \cdot\left(\sum_{C \in \operatorname{ind} \Gamma} g_{A, B}^{C} \cdot C\right),
$$

where

$$
g_{A, B}^{C}:=\#\{X \subseteq C \mid C / X \simeq A \text { and } X \simeq B\}
$$

and $\langle-,-\rangle$ is the Euler homological form.
In \mathscr{H} we also have the comultiplication $\delta: \mathscr{H} \rightarrow \mathscr{H} \otimes \mathscr{H}$ defined by

$$
\delta(A):=\sum_{B, C \in \operatorname{ind} \Gamma} q^{\langle\operatorname{dim} B, \operatorname{dim} C\rangle} \cdot g_{B, C}^{A} \cdot \frac{|\operatorname{Aut} B| \cdot|\operatorname{Aut} C|}{|\operatorname{Aut} A|} \cdot(B \otimes C),
$$

which is coassociative and have the counit $\varepsilon: \mathscr{H} \rightarrow \mathbb{R}$ given by

$$
\varepsilon(A):= \begin{cases}1 & A \simeq 0, \\ 0 & A \nsucceq 0 .\end{cases}
$$

Moreover, if we define the multiplication in $\mathscr{H} \otimes \mathscr{H}$ by

$$
(A \otimes B) \cdot(C \otimes D):=q^{(\operatorname{dim} B, \operatorname{dim} C) / 2} \cdot((A \cdot C) \otimes(B \cdot D)),
$$

where

$$
(\alpha, \beta):=\langle\alpha, \beta\rangle+\langle\beta, \alpha\rangle,
$$

then δ becomes a homomorphism of algebras.

Next, if we define the symmetric pairing $\mathscr{H} \times \mathscr{H} \rightarrow \mathbb{R}$ by

$$
(A \mid B):= \begin{cases}\frac{1}{|\operatorname{Aut} A|} & A \simeq B \\ 0 & A \nsim B\end{cases}
$$

then

$$
(A \mid B \cdot C)=(\delta(A) \mid B \otimes C)
$$

where

$$
\left(B^{\prime} \otimes C^{\prime} \mid B^{\prime \prime} \otimes C^{\prime \prime}\right):=\left(B^{\prime} \mid B^{\prime \prime}\right) \cdot\left(C^{\prime} \mid C^{\prime \prime}\right)
$$

For $\alpha \in \mathbb{N}_{0}, \alpha \neq 0$, let $\mathscr{H}_{\alpha}^{\prime}$ be the orthogonal complement in \mathscr{H}_{α} of $\sum \mathscr{H}_{\beta} \cdot \mathscr{H}_{\gamma}$ (with respect to the above pairing), where the sum runs over all $\beta, \gamma \in \mathbb{N} \Gamma_{0}, \beta, \gamma \neq 0$, such that $\beta+\gamma=\alpha$. Choose an orthonormal basis $\left(\theta_{i}\right)_{i \in I_{\alpha}}$ in $\mathscr{H}_{\alpha}^{\prime}$. Let I be the disjoint union of all I_{α}. For $i, j \in I$ we put

$$
(i, j):=(\alpha, \beta)
$$

provided $i \in I_{\alpha}$ and $j \in I_{\beta}$.
Let \mathscr{U}_{+}be the \mathbb{R}-algebra generated by $E_{i}, i \in I$, and relations

$$
E_{i} \cdot E_{j}-E_{j} \cdot E_{i}=0
$$

for $i, j \in I$ such that $(i, j)=0$, and

$$
\sum_{l \in[0,1-(i, j)]}(-1)^{l} \cdot\left\{\begin{array}{c}
1-(i, j) \\
i
\end{array}\right\} \cdot E_{i}^{l} \cdot E_{j} \cdot E_{i}^{1-(i, j)-l}=0
$$

for $i, j \in I$ such that $(i, i)=2$, where

$$
\begin{gathered}
\{n\}:=\frac{q^{n / 2}-q^{-n / 2}}{q^{1 / 2}-q^{-1 / 2}}, \\
\{n\}!:= \begin{cases}1 & n=0 \\
\{1\} \cdot \ldots \cdot\{n\} & n>0\end{cases}
\end{gathered}
$$

and

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}:=\frac{\{n\}!}{\{k\}!\cdot\{n-k\}!} .
$$

Theorem.

The map $\mathscr{U}_{+} \rightarrow \mathscr{H}$ given by $E_{i} \mapsto \theta_{i}, i \in I$, is an isomorphism of algebras.

