REPRESENTATIONS OF THE ALGEBRAIC GROUP

$$
\operatorname{Aut}\left(k[t] / t^{p}\right)
$$

BASED ON THE TALK BY MARKUS SEVERITT

Throughout the talk k will be a field.
By an algebraic group over a field k we mean a functor G from the category of k-algebras to the category of groups which is representable by a Hopf algebra, i.e. there exists a Hopf algebra, denoted $k[G]$, such that $G(R)$ is the set of k-algebra homomorphisms from $k[G]$ to R with the group structure determined by the comultiplication in $k[G]$.
Let \mathbb{G}_{a} denote the algebraic group which associates to a k-algebra R its additive group. In this case $k[G]=k[x]$ with the comultiplication

$$
x \mapsto x \otimes 1+1 \otimes x
$$

Similarly, by \mathbb{G}_{m} we denote the algebraic group which associates to a k-algebra R its multiplicative group. In this case $k[G]=k\left[x, x^{-1}\right]$ with the comultiplication

$$
x \mapsto x \otimes x
$$

Finally, if V is a finite dimensional vector space, then $\mathrm{GL}(V)$ is the algebraic group which associates to a k-algebra R the group of R automorphism of $V \otimes_{k} R$.
By a representation of an algebraic group G we mean a morphism $\rho: G \rightarrow \mathrm{GL}(V)$ of algebraic groups for a finite dimensional vector space V. It follows that the category of representations of an algebraic group G coincides with the category of right $k[G]$-comodules.
For an algebraic group G we define its Lie algebra $L(G)$ by

$$
L(G):=\operatorname{Der}_{k}(k[G], k)
$$

If $G \rightarrow \mathrm{GL}(V)$ is a representation of an algebraic group G, then we have the induced representation $L(G) \rightarrow \operatorname{End}(V)$ of $L(G)$.
Let $C:=k[t] / t^{p}$. By $G:=\operatorname{Aut}(C)$ we denote the algebraic group which associates to a k-algebra R the group of R-algebra automorphisms of $R[t] / t^{p}$.
Fix a k-algebra R. We may identify $\varphi \in G(R)$ with $\varphi(t)$. Under this identification
$G(R)=\left\{a_{0}+a_{1} t+\cdots+a_{p-1} t^{p-1} \mid a_{0}, \ldots, a_{p-1} \in R, a_{0}^{p}=0, a_{1} \in R^{\times}\right\}$.

Put

$$
G_{-}(R):=\left\{a_{0}+t \mid a_{0} \in R, a_{0}^{p}=0\right\}, \quad G_{0}(R):=\left\{a_{1} t \mid a_{1} \in R^{\times}\right\},
$$

and

$$
G_{+}(R):=\left\{t+a_{2} t+\cdots+a_{p-1} t^{p-1} \mid a_{2}, \ldots, a_{p-1} \in R\right\} .
$$

Observe that G_{-}is isomorphic to the first Frobenius kernel of \mathbb{G}_{a}. Similarly, G_{0} is isomorphic to \mathbb{G}_{m}. Finally, as a variety G_{+}is isomorphic to \mathbb{A}^{p-2}.

Lemma.

The multiplication map

$$
G_{-} \times G_{0} \times G_{+} \rightarrow G
$$

gives an isomorphism of set valued functors.
The natural inclusion $G \subset \mathrm{GL}(C)$ gives C the structure of a representation of G, which we denote by C.
We introduce in C another structure of a representation of G, which we denote by ΩC (because of its connection with the Kähler module of differentials). If R is a k-algebra, $g \in G(R)$, and $f \in R[t] / t^{p}$, then

$$
g * f:=f(g) \cdot g^{\prime}
$$

We have the morphism $d: C \rightarrow \Omega C$ of G-representations given by

$$
d(f):=f^{\prime}
$$

for $f \in R[t] / t^{p}$ and a k-algebra R. More generally, let $r \in[0, p-1]$. Then by $(\Omega C)^{\otimes_{C} r}$ we denote the structure of a G-representation in C given by the formula

$$
g * f:=f(g) \cdot g^{\prime r},
$$

where $g \in G(R)$ and $f \in R[t] / t^{p}$ for a k-algebra R. Let C_{r} be the subrepresentation of $(\Omega C)^{\otimes C r}$ generated by 1 . Then

$$
C_{r}= \begin{cases}k \cdot 1 & r=0 \\ \operatorname{Im} d & r=1 \\ (\Omega C)^{\otimes_{C} r} & r>1\end{cases}
$$

In particular, C_{0} is isomorphic to the trivial representation of G.
Let $L: G \rightarrow \mathbb{G}_{m}$ be the representation of G given by

$$
L(g):=\left(g^{\prime}(0)\right)^{p}
$$

for $g \in G(R)$ and a k-algebra R.
If $n \in \mathbb{Z}$ and $r \in[0, p-1]$, then

$$
C_{n \cdot p+r}:=L^{\otimes_{k} n} \otimes_{k} C_{r} .
$$

Proposition.

The sequence

$$
0 \rightarrow C_{0} \rightarrow C \xrightarrow{d} \Omega C \xrightarrow{\text { res }} L \rightarrow 0
$$

where

$$
\operatorname{res}\left(t^{i}\right)=\delta_{i, p-1}, i \in[0, p-1]
$$

is an exact sequence of G-representations.
For $i \in\{-1\} \cup \mathbb{N}$, let ∂_{i} be the endomorphism of C given by

$$
\partial_{i}(f):=t^{i+1} \cdot f^{\prime}
$$

Observe that $\left[\partial_{i}, \partial_{j}\right]=(j-i) \partial_{i+j}$ for all $i, j \in\{-1\} \cup \mathbb{N}$. Obviously, $\partial_{i}=0$ for $i \in \mathbb{N}, i \geq p$.

Lemma.
Under the inclusion $L(G) \subset \operatorname{End}(C)$ induced by the inclusion $G \subset$ $\mathrm{GL}(C), L(G)$ has a basis formed by $\partial_{-1}, \ldots, \partial_{p-2}$.

For a representation $\rho: G \rightarrow \mathrm{GL}(V)$ and $m \in \mathbb{Z}$ we put

$$
V_{m}:=\left\{v \in V \mid \rho(g) * v=g^{m} \cdot v \text { for all } g \in G_{0}\right\}
$$

Lemma.
If $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation of G, then $\partial_{i}\left(V_{n}\right) \subset V_{n+i}$ for each $n \in \mathbb{Z}$ and $i \in\{-1\} \cup \mathbb{N}$.

If $\rho: G \rightarrow \mathrm{GL}(V)$ is a representation of G and $n \in \mathbb{Z}$, then we say that ρ is pure of weight n if $\operatorname{Ker} \partial_{-1}=V_{n}$ and V_{n} generates V as a representation of G.

Proposition.

Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation of G. Then V is simple if and only if there exists $n \in \mathbb{Z}$ such that ρ is pure of weight n and $\operatorname{dim}_{k} V_{n}=1$.

Proposition.

Let $\rho: G \rightarrow \mathrm{GL}(V)$ and $\phi: G \rightarrow \mathrm{GL}(W)$ be representations of G, and $n \in \mathbb{Z}$. If ρ and ϕ are of pure weight n and $\operatorname{dim}_{k} V_{n}=1=\operatorname{dim}_{k} W_{n}$, then $\rho \simeq \phi$.

Proposition.

If $n \in \mathbb{Z}$, then C_{n} is a simple representation of G of pure weight n.
Theorem (Deligne).
The representations $C_{n}, n \in \mathbb{Z}$, form a complete list of pairwise nonisomorphic simple representations of G.

Let $\operatorname{Rep}(G)$ be the K_{0}-group of representations of G. Then $\operatorname{Rep}(G)$ has a structure of a ring with the multiplication given by the tensor product over k.

Corollary.
$\operatorname{Rep}(G)$ is generated, as a k-algebra, by $[L]$ and $\left[(\Omega C)^{\otimes{ }^{\otimes} r}\right], r \in[1, p-1]$. Proof.

We use that $\left[C_{0}\right]=1,\left[C_{1}\right]=[\Omega C]-[L]$, and $\left[C_{r}\right]=\left[(\Omega C)^{\otimes_{C} r}\right]$ for each $r \in[2, p-1]$.

