INTRODUCTION TO SCHUR ALGEBRAS. II

BASED ON THE TALK BY STEPHEN DOTY

Throughout the talk K will be a field, G a reductive connected algebraic group, and T a maximal torus in G.

Recall that the simple G-modules are parameterized by the set $X(T)^+$ of dominant weights.

Let π be a set of dominant weights. Let $\mathscr{C}(\pi)$ be the full subcategory of the category of *G*-modules formed by the *G*-modules *M* such that each composition factor of *M* has the highest weight in π . For a *G*-module *M* we denote by $\mathscr{O}_{\pi}M$ the largest submodule of *M* which belongs to $\mathscr{C}(\pi)$. In this way we obtain a left exact functor \mathscr{O}_{π} from the category of *G*-modules to $\mathscr{C}(\pi)$, which is called a truncation functor.

A set π of dominant weights is called saturated if for all $\lambda, \mu \in X(T)^+$ such that $\lambda \leq \mu$ and $\mu \in \pi$ (where \leq is the dominace order) we have $\lambda \in \pi$.

PROPOSITION.

Let π be a saturated subset of $X(T)^+$. Then $\mathscr{C}(\pi)$ is a highest weight category in the sense of Cline/Parhsall/Scott and

$$\operatorname{Ext}_{\mathscr{C}(\pi)}^{\circ}(M,N) \simeq \operatorname{Ext}_{G}^{\circ}(M,N)$$

for all $M, N \in \mathscr{C}(\pi)$.

Let π be a finite and saturated set of dominant weights. We put $A_K(\pi) := \mathscr{O}_{\pi} K[G]$ and $S_K(\pi) := A_K(\pi)^*$, and call $S_K(\pi)$ a generalized Schur algebra. One shows that $S_K(\pi)$ is a finite dimensional quasi-herediatry algebra. Moreover, it can be proved that $\mathscr{C}(\pi)$ is equivalent to the category of $S_K(\pi)$ -modules,

$$\dim_K S_K(\pi) = \sum_{\lambda \in \pi} \dim_K^2 \Delta(\lambda),$$

where for $\lambda \in \pi$ we denote by $\Delta(\lambda)$ the Weyl module of highest weight λ . Finally, there exists the integral form $S_{\mathbb{Z}}(\pi)$ of $S_K(\pi)$ independent on K such that $S_K(\pi) \simeq K \otimes_{\mathbb{Z}} S_{\mathbb{Z}}(\pi)$.

Donkin proved that if $G = \operatorname{GL}_n$ for $n \in \mathbb{N}_+$ and π is the set of dominant weights in $(K^n)^{\otimes r}$ for $r \in \mathbb{N}_+$, then $S_K(\pi) \simeq S_K(n, r)$.

Date: 06.02.2009.

Let R be a commutative ring and fix $v \in R^{\times}$. Put $q := v^2$. For $r \in \mathbb{N}_+$ we define $\mathbb{H} := \mathbb{H}_{q}(\mathfrak{S}_{r})$ as the associative *R*-algebra generated by T_{1} , \ldots, T_{r-1} and the following relations:

- (1) $(T_i + 1)(T_i q) = 0, i \in [1, r 1],$
- (2) $T_i T_j T_i = T_j T_i T_j, i, j \in [1, r-1], |i-j| = 1,$ (3) $T_i T_j = T_j T_i, i, j \in [1, r-1], |i-j| > 1.$

Relations (2) and (3) are called braid relations. Some authors replace relation (1) by the relation $(T_i - v)(T_i + v^{-1}) = 0, i \in [1, n - 1].$ This leads to an equivalent theory. Observe that $\mathbb{H} = RS_r$ if q = 1. For a sequence $I = (i_1, \ldots, i_r)$ with $i_1, \ldots, i_r \in [1, n]$ we put $X_I :=$ $x_{i_1} \otimes \cdots \otimes x_{i_r}$, where x_1, \ldots, x_n is the standard basis of \mathbb{R}^n . The we define the (right) action of \mathbb{H} on $(\mathbb{R}^n)^{\otimes r}$ by

$$X_I T_k := \begin{cases} v^2 X_I & i_k = i_{k+1}, \\ v X_{I(k,k+1)} & i_k < i_{k+1}, \\ v X_{I(k,k+1)} + (v^2 - 1) X_I & i_k > i_{k+1}, \end{cases}$$

for a sequence $I = (i_1, ..., i_r)$ with $i_1, ..., i_r \in [1, n]$ and $k \in [1, r - 1]$, where $I(k, k + 1) := (j_1, ..., j_r)$ and

$$j_l := \begin{cases} i_l & l \neq k, k+1, \\ i_{k+1} & l = k, \\ i_k & l = k+1, \end{cases}$$

for $l \in [1, r]$. We define $\mathscr{S}_q(n, r) := \operatorname{End}_{\mathbb{H}}((\mathbb{R}^n)^{\otimes r})$ and call it a Dipper-James q-Schur algebra.