CONTRAVARIANTLY FINITE SUBCATEGORIES CLOSED UNDER PREDECESSORS

BASED ON THE TALK BY FLÁVIO ULHOA COELHO

The talk was based on a joint work with Assem and Trepode.

For an Artin algebra A we define the classes \mathscr{L}_A and \mathscr{R}_A of indecomposable A-modules by

 $\mathscr{L}_A := \{ X \in \operatorname{ind} A \mid \operatorname{pd}_A Y \leq 1 \text{ for each predecessor } Y \text{ of } X \}$

and

 $\mathscr{R}_A := \{ X \in \operatorname{ind} A \mid \operatorname{id}_A Y \leq 1 \text{ for each successor } Y \text{ of } X \}.$

These classes may be used in order to characterize some classes of algebras. Namely, we have the following statements:

- an Artin algebra A is quasi-tilted if and only if $\mathscr{L}_A \cup \mathscr{R}_A = \operatorname{ind} A$ and gl. dim $A \leq 2$;
- an Artin algebra A is shod if $\mathscr{L}_A \cup \mathscr{R}_A = \operatorname{ind} A$ (consequently, gl. dim $A \leq 3$);
- an Artin algebra A is weakly shod if $\mathscr{L}_A \cup \mathscr{R}_A$ is cofinite in ind A and each indecomposable A-module X not in $\mathscr{L}_A \cup \mathscr{R}_A$ is directed;
- an Artin algebra A is a laura algebra if $\mathscr{L}_A \cup \mathscr{R}_A$ is cofinite in ind A.

Let \mathscr{C} be a class of indecomposable modules over an Artin algebra A. By a right \mathscr{C} -approximation of an A-module M we mean a morphism $f \in \operatorname{Hom}_A(C, M)$ with $C \in \operatorname{add} \mathscr{C}$ such that $\operatorname{Hom}_A(C', f)$ is onto for each $C' \in \mathscr{C}$. We say that \mathscr{C} is contravariantly finite if each A-module M has a right \mathscr{C} -approximation. Dually, we define left \mathscr{C} -approximations and covariantly finite classes of indecomposable modules.

If A is a laura algebra which is not quasi-titled, then \mathscr{L}_A is contravariantly finite and \mathscr{R}_A is covariantly finite. An Artin algebra A is called left supported if \mathscr{L}_A is contravariantly finite.

Let A be an Artin algebra A. For a class \mathscr{C} of indecomposable Amodules we denote by $E_{\mathscr{C}}$ the direct sum of Ext-injective objects in \mathscr{C} . Similarly, in the above situation $F_{\mathscr{C}}$ denotes the direct sum of the indecomposable projective A-modules which do not belong to \mathscr{C} . Finally, by A_{λ} we denote the endomorphism ring of the direct sum of

Date: 24.04.2009.

the indecomposable projective A-modules which belong to \mathscr{L}_A . It is known that A_{λ} is a product of quasi-titled algebras.

THEOREM (ASSEM/COELHO/TREPODE).

For an Artin algebra A the following conditions are equivalent.

- A is left supported.
- $E_{\mathscr{L}_A} \oplus F_{\mathscr{L}_A}$ is a tilting module.
- A_{λ} is a product of tilted algebras and $E_{\mathscr{L}_{A}}$ restricted to A_{λ} is the union of complete slices.

A class \mathscr{C} of indecomposable modules over an Artin algebra A is called resolving if the following conditions are satisfied:

- *C* is closed under extensions;
- *C* is closed under kernels of epimorphisms;
- *C* contains all projective *A*-modules.

Let A be an Artin algebra. For an A-module M we put

$$M^{\perp} := \{ X \in \operatorname{ind} A \mid \operatorname{Ext}_{A}^{i}(X, M) = 0 \text{ for all } i \in \mathbb{N}_{+} \}.$$

Similarly, we define \mathscr{C}^{\perp} and ${}^{\perp}\mathscr{C}$ for a class \mathscr{C} of indecomposable *A*-modules. Moreover, in the above situation we denote by $\check{\mathscr{C}}$ the class of *A*-modules *M* such that there exists an exact sequence

$$0 \to C_n \to \cdots \to C_0 \to M \to 0$$

with $C_0, \ldots, C_n \in \operatorname{add} \mathscr{C}$.

THEOREM (AUSLANDER/REITEN).

Let A be an Artin algebra.

The map $M \mapsto M^{\perp}$ induces a bijection between the isomorphism classes of multiplicity free (generalized) cotilting A-modules and the contravariantly finite resolving subclasses \mathscr{C} of indecomposable A-modules such that $M \in \check{\mathscr{C}}$ for each A-module M. The inverse map is given by $\mathscr{C} \mapsto E_{\mathscr{C}}$.

THEOREM (ASSEM/COELHO/TREPODE).

The following conditions are equivalent for a class $\mathscr C$ of indecomposable modules over an Artin algebra A closed under predecessors.

- *C* is contravariantly finite and resolving.
- $E_{\mathscr{C}}$ is a (generalized) cotilting module.
- \mathscr{C}^{\perp} is covariantly finite and $\mathscr{C} = {}^{\perp}(\mathscr{C}^{\perp}).$
- add $\mathscr{C} = \operatorname{Supp} \operatorname{Hom}_A(-, E_{\mathscr{C}})$ and $E_{\mathscr{C}}$ is sincere.

Moreover, if the above conditions are satisfied, then $\mathscr{C} = {}^{\perp}E_{\mathscr{C}}$. Finally, if

$$\max\{\operatorname{pd}_A C \mid C \in \mathscr{C}\} < \infty,$$

then the above conditions are equivalent to the condition

• $E_{\mathscr{C}}$ is a (generalized) tilting module.