AUSLANDER GENERATORS OF ITERATED TILTED ALGEBRAS

BASED ON THE TALK BY DIETER HAPPEL

The talk was based on a joint work with Flávio Coelho and Luise Unger. Throughout the talk k is a fixed field. All algebras and modules are finite dimensional over k.

§1. Representation dimension

DEFINITION.

A module M over a k-algebra Λ is called a generator-progenerator of $\operatorname{mod} \Lambda$ if $\Lambda \oplus D\Lambda \in \operatorname{add} M$.

DEFINITION.

By a representation dimension rep. $\dim\Lambda$ of a finite dimensional k- algebra Λ we mean

 $\min\{\text{gl. dim End}_{\Lambda}(M) \mid M \text{ is a generator-progenerator of } \mod \Lambda\}.$

Remark.

Auslander proved that rep. $\dim\Lambda\leq 2$ for an algebra Λ if and only if Λ is representation finite.

Remark.

Iyama proved that rep. dim $\Lambda < \infty$ for each algebra Λ .

PROPOSITION.

If there exists a generator-progenetator of mod Λ for an algebra Λ with the property that for each Λ -module X there exists an exact sequence

$$0 \to M_1 \to M_0 \to X \to 0$$

such that $M_0, M_1 \in \operatorname{add} M$ and the induced sequence

$$0 \to \operatorname{Hom}_{\Lambda}(M, M_1) \to \operatorname{Hom}_{\Lambda}(M, M_0) \to \operatorname{Hom}_{\Lambda}(M, X) \to 0$$

is exact, then rep. dim $\Lambda \leq 3$.

EXAMPLE.

If H is a hereditary algebra, then rep. dim $H \leq 3$ (it is enough to take $M := \Lambda \oplus D\Lambda$).

EXAMPLE.

Assem, Platzek, and Trepode proved that if Λ is a tilted algebra, then rep. dim $\Lambda \leq 3$.

Date: 19.06.2009.

EXAMPLE.

Oppermann proved that if Λ is a quasitilted algebra, then rep. dim $\Lambda \leq 3$.

§2. Iterated tilted algebras

DEFINITION.

Let H be a hereditary algebra. We say that an algebra Λ is *iterated tilted of type* H if there exists algebras $\Lambda_0, \ldots, \Lambda_m$ such that $\Lambda_0 = H$, $\Lambda_m = \Lambda$, and for each $i \in [1, m]$ there exists a tilting Λ_{i-1} -module T_i such that $\Lambda_i = \operatorname{End}_{\Lambda_{i-1}} T_i$.

EXAMPLE.

Let Δ be a finite oriented tree. If $\Lambda := k\Delta/\langle w \mid \ell(w) \geq 2 \rangle$, then Λ is an iterated tilted algebra of type $k\Delta$.

DEFINITION.

Let H be a hereditary algebra. We say that an algebra Λ is *piecewise* hereditary of type H if $\mathscr{D}^b(\Lambda)$ and $\mathscr{D}^b(H)$ are equivalent as triangulated categories.

THEOREM (HAPPEL/RICKARD/SCHOEFIELD).

Let H be a hereditary algebra. For an algebra Λ the following conditions are equivalent.

- (1) Λ is iterated tilted of type *H*.
- (2) Λ is piecewise hereditary of type H.
- (3) There exists a tilting object T in $\mathscr{D}^b(H)$ such that $\Lambda = \operatorname{End}(T)$.

§3. MAIN RESULT

ASSUMPTION.

Throughout this section we fix an iterated tilted algebra Λ . We also fix a hereditary algebra H and a tilting object T in $\mathscr{D}^b(H)$ such that $\Lambda = \operatorname{End}(T)$.

NOTATION.

Let $F : \mathscr{D}^b(H) \to \mathscr{D}^b(\Lambda)$ be the triangle equivalence induced by T and denote by G a quasi-inverse to F.

NOTATION.

If $t \in \mathbb{Z}$, then $\mathscr{H}_t := \operatorname{ind} H[t]$.

Remark.

If X is an indecomposable object of $\mathscr{D}^b(H)$, then $X \in \mathscr{H}_t$ for some t.

ASSUMPTION.

Without loss of generality we may assume that $T = \bigoplus_{t \in [0,r]} T_t[t]$ for some $r \in \mathbb{N}$ and *H*-modules T_0, \ldots, T_t .

Remark.

If X is an indecomposable Λ -module, then $GX \in \bigcup_{t \in [0,r+1]} \mathscr{H}_t$.

NOTATION.

For $t \in [0, r+1]$ we put

$$\mathscr{U}_t := \operatorname{add} \{ X \in \operatorname{ind} \Lambda \mid GX \in \mathscr{H}_t \}.$$

NOTATION.

For an H-module X we put

$$\mathscr{T}(X) := \{ Y \in \text{mod} \ H \mid \text{Ext}^{1}_{\Lambda}(X, Y) = 0 \},$$
$$\mathscr{F}(X) := \{ Y \in \text{mod} \ H \mid \text{Hom}^{1}_{\Lambda}(X, Y) = 0 \},$$

and

$$X^{\perp} := \mathscr{T}(X) \cap \mathscr{F}(X).$$

NOTATION.

For $t \in [0, r+1]$ we put

$$\mathscr{V}_t := \mathscr{T}(T_t) \cap \mathscr{F}(T_{t-1}) \cap \bigcap_{\substack{i \in [0, r+1]\\ i \neq t, t+1}} T_i^{\perp},$$

where $T_{-1} := 0 =: T_{r+1}$.

Remark.

For each $t \in [0, r+1]$ \mathscr{V}_t is closed under extensions, direct summands, and images.

Remark.

For each $t \in [0, r+1]$ the restriction of F to $\mathscr{V}_t[t]$ induces an equivalence with \mathscr{U}_t .

NOTATION.

For $t \in [0, r + 1]$ let R_t be a chosen additive generator of the full subcategory of Ext-projective objects in \mathscr{V}_t .

NOTATION.

For $t \in [0, r+1]$ let L_t be a chosen additive generator of the full subcategory of Ext-injective objects in \mathscr{V}_t .

LEMMA.

Let $t \in [0, r+1]$ and $X \in \mathscr{V}_t$. If π is a minimal add R_t -approximation, then π is surjective and Ker $\pi \in \operatorname{add} R_t$.

LEMMA.

Let $t \in [0, r+1]$ and $X \in \mathscr{V}_t$. If α is a minimal add L_t -approximation, then α is injective.

Proof.

One easily checks that $\operatorname{Im} \alpha$ is Ext-injective in \mathscr{V}_t .

PROPOSITION.

Let $t \in [0, r+1]$ and $X \in \mathscr{V}_t$. Then there exists a short exact sequence

$$0 \to R \to N \xrightarrow{f} X \to 0$$

such that $R \in \operatorname{add} R_t$, $N \in \operatorname{add}(R_t \oplus L_t)$, and f is an $\operatorname{add}(R_t \oplus L_t)$ -approximation.

Proof.

Let $\pi : R' \to X$ be a minimal add R_t -approximation and $\alpha : L' \to X$ a minimal add L_t -approximation. Next, let

$$\begin{array}{c} R \longrightarrow L' \\ \downarrow^{\beta} \qquad \downarrow^{\alpha} \\ R' \xrightarrow{\pi} X \end{array}$$

be the pull-back diagram. Then we have an exact sequence

$$0 \to \operatorname{Ker} \pi \to R \to L' \to 0,$$

hence $R \in \mathscr{V}_t$. Moreover, β is injective, thus $R \in \text{add } R_t$, and the claim follows.

NOTATION.

For $t \in [0, r+1]$ we put $Q_t := FR_t[t]$ and $K_t := FL_t[t]$.

Remark.

Let $t \in [0, r]$. If $X \in \mathscr{U}_t$ and $Y \in \mathscr{U}_{t+1}$, then any map $X \to Y$ factors through add Q_{t+1} .

THEOREM.

rep. dim $\Lambda \leq 3$.

Proof.

Put $M := \bigoplus_{t \in [0, r+1]} (Q_t \oplus K_t)$. For an indecomposable Λ -module X we will find an exact sequence

$$\varepsilon: 0 \to M_1 \to M_0 \xrightarrow{f} X \to 0$$

such that $M_0, M_1 \in \text{add } M$ and f is an add M-approximation of X. Let $t \in [0, r+1]$ be such that $X \in \mathscr{U}_t$. Fix an indecomposable H-module Y such that X = FY[t]. We have an exact sequence

$$\eta: 0 \to R \to N \xrightarrow{g} X \to 0$$

such that $R \in \text{add} R_t$, $N \in \text{add}(R_t \oplus L_t)$, and g is an $\text{add}(R_t \oplus L_t)$ approximation. We put $\varepsilon := F\eta$ and the claim follows.