QUASIHEREDITARY ALGEBRAS ASSOCIATED WITH REDUCED WORDS IN COXETER GROUPS

BASED ON THE TALK BY IDUN REITEN

The talk was based on a joint work with Osamu Iyama.
Throughout the talk k is a fixed algebraically closed field.

§1. Quasihereditary algebras

Throughout this section we fix a finite dimensional k-algebra Λ together with a complete sequence (S_{1}, \ldots, S_{n}) of pairwise nonisomorphic simple Λ-modules.

Notation.

For $i \in[1, n]$ we denote by P_{i} the projective cover of i.

Notation.

For $i \in[1, n]$ we denote by Δ_{i} the largest factor module of P_{i} with composition factors S_{1}, \ldots, S_{i}. We call $\Delta_{1}, \ldots, \Delta_{n}$ standard modules.

Notation.

We denote by $\mathscr{F}(\Delta)$ the class of Λ-modules which have filtrations using $\Delta_{1}, \ldots, \Delta_{n}$.

Definition.
We say that Λ is quasihereditary if $\operatorname{End}_{\Lambda}\left(\Delta_{i}\right)=k$ and $P_{i} \in \mathscr{F}(\Delta)$ for each $i \in[1, n]$.

Definition.

We say that Λ is strongly quasihereditary if Λ is quasihereditary and $\operatorname{pd}_{\Lambda} \Delta_{i} \leq 1$ for each $i \in[1, n]$.

§2. CONSTRUCTION OF QUASIHEREDITARY ALGEBRAS

Proposition.
Let \mathscr{C} be an extension closed Hom-finite subcategory of an abelian category. Let $T:=\bigoplus_{i \in[1, n]}$ for pairwise nonisomorphic indecomposable objects of \mathscr{C} and $\Gamma:=\operatorname{End}(T)$. If $\operatorname{Ext}^{1}(T, T)=0$, gl. $\operatorname{dim} \Gamma<\infty$, and the minimal left $\operatorname{add}\left(\bigoplus_{j \in[1, i-1]} T_{j}\right)$-approximation $T_{i} \xrightarrow{f_{i}} T_{i}^{\prime}$ of T_{i} is surjective for each $i \in[1, n]$, then Γ is strongly quasihereditary with the standard modules $\operatorname{Hom}\left(\operatorname{Ker} f_{i}, T\right)$. Moreover, if T_{i}^{\prime} is either indecomposable or zero for each $i \in[1, n]$, then each indecomposable projective Γ-module has a unique Δ-composition series.

For the rest of the section we assume that Q is a finite quiver without oriented cycles and we denote by Λ the associated preprojective algebra. Finally, we assume that $Q_{0}=[1, n]$.

Notation.

For $i \in[1, n]$ we put

$$
I_{i}:=\Lambda\left(1-e_{i}\right) \Lambda,
$$

where e_{i} denotes the corresponding idempotent in Λ.

Definition.

By the Coxeter group W of Q we mean the group generated by s_{i}, $i \in[1, n]$, together with the following relations:

- $s_{i}^{2}=1, i \in[1, n]$,
- $s_{i} s_{j}=s_{j} s_{i}, i, j \in[1, n]$, there is no arrow between i and j,
- $s_{i} s_{j} s_{i}=s_{j} s_{i} s_{j}, i, j \in[1, n]$, there is exactly one arrow between i and j.

Definition.
By a reduced expression of $w \in W$ we mean every sequence $\left(i_{1}, \ldots, i_{t}\right)$ of vertices of Q such that $w=s_{i_{1}} \cdots s_{i_{t}}$ and $t \leq l$ for each sequence $\left(j_{1}, \ldots, j_{l}\right)$ such that $w=s_{j_{1}} \cdots s_{j_{l}}$.

For the rest of the section we fix $w \in W$ together with a reduced expression $\left(i_{1}, \ldots, i_{t}\right)$.

Notation.

We put

$$
\Lambda_{w}:=\Lambda /\left(I_{i_{1}} \cdots I_{i_{t}}\right) \quad \text { and } \quad T:=\bigoplus_{j \in[1, t]} P_{i_{j}} / I_{i_{1}} \cdots I_{i_{j}} P_{i_{j}} .
$$

Theorem.
The algebra $\operatorname{End}_{\Lambda_{w}}(T)$ is strongly quasihereditary.

