QUASIHEREDITARY ALGEBRAS ASSOCIATED WITH REDUCED WORDS IN COXETER GROUPS

BASED ON THE TALK BY IDUN REITEN

The talk was based on a joint work with Osamu Iyama. Throughout the talk k is a fixed algebraically closed field.

§1. QUASIHEREDITARY ALGEBRAS

Throughout this section we fix a finite dimensional k-algebra Λ together with a complete sequence (S_1, \ldots, S_n) of pairwise nonisomorphic simple Λ -modules.

NOTATION.

For $i \in [1, n]$ we denote by P_i the projective cover of i.

NOTATION.

For $i \in [1, n]$ we denote by Δ_i the largest factor module of P_i with composition factors S_1, \ldots, S_i . We call $\Delta_1, \ldots, \Delta_n$ standard modules.

NOTATION.

We denote by $\mathscr{F}(\Delta)$ the class of Λ -modules which have filtrations using $\Delta_1, \ldots, \Delta_n$.

DEFINITION.

We say that Λ is quasihereditary if $\operatorname{End}_{\Lambda}(\Delta_i) = k$ and $P_i \in \mathscr{F}(\Delta)$ for each $i \in [1, n]$.

DEFINITION.

We say that Λ is strongly quasihereditary if Λ is quasihereditary and $pd_{\Lambda} \Delta_i \leq 1$ for each $i \in [1, n]$.

§2. Construction of quasihereditary algebras

PROPOSITION.

Let \mathscr{C} be an extension closed Hom-finite subcategory of an abelian category. Let $T := \bigoplus_{i \in [1,n]}$ for pairwise nonisomorphic indecomposable objects of \mathscr{C} and $\Gamma := \operatorname{End}(T)$. If $\operatorname{Ext}^1(T,T) = 0$, gl. dim $\Gamma < \infty$, and the minimal left $\operatorname{add}(\bigoplus_{j \in [1,i-1]} T_j)$ -approximation $T_i \xrightarrow{f_i} T'_i$ of T_i is surjective for each $i \in [1,n]$, then Γ is strongly quasihereditary with the standard modules $\operatorname{Hom}(\operatorname{Ker} f_i, T)$. Moreover, if T'_i is either indecomposable or zero for each $i \in [1, n]$, then each indecomposable projective Γ -module has a unique Δ -composition series.

Date: 19.06.2009.

For the rest of the section we assume that Q is a finite quiver without oriented cycles and we denote by Λ the associated preprojective algebra. Finally, we assume that $Q_0 = [1, n]$.

NOTATION.

For $i \in [1, n]$ we put

$$I_i := \Lambda (1 - e_i) \Lambda,$$

where e_i denotes the corresponding idempotent in Λ .

DEFINITION.

By the *Coxeter group* W of Q we mean the group generated by s_i , $i \in [1, n]$, together with the following relations:

- $s_i^2 = 1, i \in [1, n],$
- $s_i s_j = s_j s_i, i, j \in [1, n]$, there is no arrow between *i* and *j*,
- $s_i s_j s_i = s_j s_i s_j, i, j \in [1, n]$, there is exactly one arrow between i and j.

DEFINITION.

By a reduced expression of $w \in W$ we mean every sequence (i_1, \ldots, i_t) of vertices of Q such that $w = s_{i_1} \cdots s_{i_t}$ and $t \leq l$ for each sequence (j_1, \ldots, j_l) such that $w = s_{j_1} \cdots s_{j_l}$.

For the rest of the section we fix $w \in W$ together with a reduced expression (i_1, \ldots, i_t) .

NOTATION.

We put

$$\Lambda_w := \Lambda/(I_{i_1} \cdots I_{i_t}) \quad \text{and} \quad T := \bigoplus_{j \in [1,t]} P_{i_j}/I_{i_1} \cdots I_{i_j}P_{i_j}.$$

THEOREM.

The algebra $\operatorname{End}_{\Lambda_w}(T)$ is strongly quasihereditary.