RAY CATEGORIES, I

BASED ON THE TALK BY DIETER VOSSIECK

Definition.

By a ray category we mean every category X such that the following conditions are satisfied:
(1) The objects of the category X form a set and are pairwise nonisomorphic.
(2) There exists a family $0_{x, y}: x \rightarrow y, x, y \in X$, of zero morphisms, i.e. $0 \circ \mu=0=\nu \circ 0$.
(3) For each object x of the category X the sets $\bigcup_{y \in X} X(x, y)$ and $\bigcup_{y \in X} X(y, x)$ are finite.
(4) For each object x of the category X there exists an endomorphism ρ_{x} and a positive integer n such that

$$
X(x, x)=\left\{\mathbf{1}_{x}, \rho_{x}, \ldots, \rho_{x}^{n-1}, 0\right\} .
$$

(5) For each pair (x, y) of objects of the category X there exists a morphism $\mu \in X(x, y)$ and a positive integer m such that either

$$
X(x, y)=\left\{\mu, \mu \rho_{x}, \cdots, \mu \rho_{x}^{m-1}, 0\right\}
$$

or

$$
X(x, y)=\left\{\mu, \rho_{y} \mu, \cdots, \rho_{y}^{m-1} \mu, 0\right\} .
$$

(6) If $\mu, \mu^{\prime}, \nu, \nu^{\prime}$ are morphisms in the category X, then the following conditions are satisfied:

$$
\text { if } 0 \neq \mu \nu=\mu \nu^{\prime} \text {, then } \nu=\nu^{\prime} \text {, }
$$

and

$$
\text { if } 0 \neq \mu \nu=\mu^{\prime} \nu \text {, then } \mu=\mu^{\prime} \text {. }
$$

Remark.
The last condition in the above definition is equivalent to the following condition: if $\nu \xi \mu=\nu \mu$ for morphisms ν, ξ, and μ in the category X, then $\xi=1$.

Definition.

A morphism μ in a ray category X is called irreducible if $\mu \neq 0, \mu \neq \mathbf{1}$, and μ has no proper factorization.
Remark.
Any morphism in a ray category is a composition of irreducible ones.

Notation

Given a ray category X we denote by $Q X$ its quiver defined as follows: the vertices of the quiver $Q X$ are the objects of the category X and the arrows of the quiver $Q X$ are the irreducible morphisms in the category X.

Notation.

Given a quiver Q we denote by $P Q$ the path category of Q defined as follows: the objects of the category $P Q$ are the vertices of the quiver Q and the morphisms in the category $P Q$ are given by the paths in the quiver Q plus the formal zero morphisms.

Remark.
For a ray category X we have the canonical full and dense functor $P Q X \rightarrow X$.

Notation.

Let X be a ray category. For a morphism u in the category $P Q X$ we denote by \bar{u} its image under the canonical functor $P Q X \rightarrow X$.

Notation.
For a ray category X we denote by $R X$ the kernel of the canonical functor $P Q X \rightarrow X$, i.e.

$$
R X(x, y):=\{(u, v) \in P Q X(x, y) \times P Q X(x, y) \mid \bar{u}=\bar{v}\}
$$

Definition.

By a contour in a ray category X we mean every pair (u, v) of paths in the quiver $Q X$ such that $\bar{u}=\bar{v} \neq 0$.

Definition.

By a zero path in a ray category X we mean every path u in the quiver $Q X$ such that $\bar{u}=0$.

