RAY CATEGORIES, I

BASED ON THE TALK BY DIETER VOSSIECK

DEFINITION.

By a *ray category* we mean every category X such that the following conditions are satisfied:

- (1) The objects of the category X form a set and are pairwise nonisomorphic.
- (2) There exists a family $0_{x,y} : x \to y, x, y \in X$, of zero morphisms, i.e. $0 \circ \mu = 0 = \nu \circ 0$.
- (3) For each object x of the category X the sets $\bigcup_{y \in X} X(x, y)$ and $\bigcup_{y \in X} X(y, x)$ are finite.
- (4) For each object x of the category X there exists an endomorphism ρ_x and a positive integer n such that

$$X(x,x) = \{\mathbf{1}_x, \rho_x, \dots, \rho_x^{n-1}, 0\}.$$

(5) For each pair (x, y) of objects of the category X there exists a morphism $\mu \in X(x, y)$ and a positive integer m such that either

$$X(x,y) = \{\mu, \mu \rho_x, \cdots, \mu \rho_x^{m-1}, 0\}$$

or

$$X(x,y) = \{\mu, \rho_y \mu, \cdots, \rho_y^{m-1} \mu, 0\}.$$

(6) If μ , μ' , ν , ν' are morphisms in the category X, then the following conditions are satisfied:

if
$$0 \neq \mu\nu = \mu\nu'$$
, then $\nu = \nu'$,

and

if
$$0 \neq \mu\nu = \mu'\nu$$
, then $\mu = \mu'$.

Remark.

The last condition in the above definition is equivalent to the following condition: if $\nu \xi \mu = \nu \mu$ for morphisms ν , ξ , and μ in the category X, then $\xi = \mathbf{1}$.

DEFINITION.

A morphism μ in a ray category X is called *irreducible* if $\mu \neq 0, \mu \neq 1$, and μ has no proper factorization.

Remark.

Any morphism in a ray category is a composition of irreducible ones.

Date: 03.07.2009.

NOTATION.

Given a ray category X we denote by QX its quiver defined as follows: the vertices of the quiver QX are the objects of the category X and the arrows of the quiver QX are the irreducible morphisms in the category X.

NOTATION.

Given a quiver Q we denote by PQ the path category of Q defined as follows: the objects of the category PQ are the vertices of the quiver Q and the morphisms in the category PQ are given by the paths in the quiver Q plus the formal zero morphisms.

Remark.

For a ray category X we have the canonical full and dense functor $PQX \rightarrow X$.

NOTATION.

Let X be a ray category. For a morphism u in the category PQX we denote by \overline{u} its image under the canonical functor $PQX \to X$.

NOTATION.

For a ray category X we denote by RX the kernel of the canonical functor $PQX \to X$, i.e.

$$RX(x,y) := \{(u,v) \in PQX(x,y) \times PQX(x,y) \mid \overline{u} = \overline{v}\}.$$

DEFINITION.

By a contour in a ray category X we mean every pair (u, v) of paths in the quiver QX such that $\overline{u} = \overline{v} \neq 0$.

DEFINITION.

By a zero path in a ray category X we mean every path u in the quiver QX such that $\overline{u} = 0$.