PERVERSE EQUIVALENCES, MUTATIONS AND APPLICATIONS

BASED ON THE TALK BY SEFI LADKANI

Throughout the talk K is an algebraically closed field.

1. Introduction

The following theorem serves as a motivation for the presentation.
Theorem 1.1. Let s be a sink in a quiver Q without oriented cycles. If $\sigma_{s} Q$ is the BGP-reflection of Q at s, then $K Q$ and $K\left(\sigma_{s} Q\right)$ are derived equivalent.

We recall also the following structure theorem for the derived equivalence.

Theorem 1.2 (Rickard). Let R and S be algebras. Then R and S are derived equivalent if and only there exists a tilting R-complex T such that $S \simeq \operatorname{End}_{\mathcal{D}^{b}(R)}(T)$.

2. Mutations

2.1. Quiver mutations (Fomin/Zelevinsky). Given a quiver Q we denote by B_{Q} the $Q_{0} \times Q_{0}$-matrix defined by

$$
\begin{aligned}
\left(B_{Q}\right)_{i, j}:=\#\{\alpha \in & \left.Q_{1}: s \alpha=j \text { and } t \alpha=i\right\} \\
& \quad-\#\left\{\alpha \in Q_{1}: s \alpha=i \text { and } t \alpha=j\right\} \quad\left(i, j \in Q_{0}\right)
\end{aligned}
$$

If Q is a quiver without loops and 2-cycles, then B_{Q} determines Q uniquely up to an isomorphism fixing vertices. For a quiver Q without loops and $k \in Q_{0}$ we define the $Q_{0} \times Q_{0}$-matrices r_{k}^{-}and r_{k}^{+}by

$$
\left(r_{k}^{-}\right)_{i, j}:= \begin{cases}\delta_{i, j} & i \neq k \\ \#\left\{\alpha \in Q_{1}: s \alpha=j \text { and } t \alpha=i\right\}-\delta_{i, j} & i=k\end{cases}
$$

and

$$
\left(r_{k}^{+}\right)_{i, j}:= \begin{cases}\delta_{i, j} & i \neq k, \\ \#\left\{\alpha \in Q_{1}: s \alpha=i \text { and } t \alpha=j\right\}-\delta_{i, j} & i=k,\end{cases}
$$

$\left(i, j \in Q_{0}\right)$. Finally, for a quiver Q without loops and 2-cycles, and $k \in Q_{0}$, we denote by $\mu_{k}(Q)$ the quiver mutation of Q at k.

Lemma 2.1 (Berenstein/Fomin/Zelevinsky, Geiss/Leclerc/Schröer). If Q is a quiver without loops and 2-cycles, then

$$
B_{\mu_{k}(Q)}=\left(r_{k}^{+}\right)^{\mathrm{T}} \cdot B_{Q} \cdot r_{k}^{+} \quad \text { and } \quad B_{\mu_{k}(Q)}=\left(r_{k}^{-}\right)^{\mathrm{T}} \cdot B_{Q} \cdot r_{k}^{-}
$$

for each $k \in Q_{0}$.
2.2. Algebra mutations. Throughout this subsection A is the path algebra of a bound quiver (Q, I) and $k \in Q_{0}$.

By L_{k} we denote the cone of the canonical map

$$
P_{k} \rightarrow \bigoplus_{\substack{\alpha \in Q_{1} \\ t \alpha=k}} P_{s \alpha}
$$

and we put

$$
T_{k}^{-}:=L_{k} \oplus \bigoplus_{\substack{i \in Q_{0} \\ i \neq k}} P_{i} .
$$

We define T_{k}^{+}dually. Both T_{k}^{-}and T_{k}^{+}are perfect generators of $\mathcal{D}^{b}(A)$. Moreover, they are both silting, i.e.

$$
\operatorname{Hom}_{\mathcal{D}^{b}(A)}\left(T_{k}^{-}, T_{k}^{-}[r]\right)=0=\operatorname{Hom}_{\mathcal{D}^{b}(A)}\left(T_{k}^{+}, T_{k}^{+}[r]\right)
$$

for each $r \in \mathbb{N}_{+}$. Next, T_{k}^{-}is tilting if and only if

$$
\operatorname{Hom}_{\mathcal{D}^{b}(A)}\left(P_{i}, L_{k}[-1]\right)=0
$$

for each $i \in Q_{0}, i \neq k$, which leads to a combinatorial condition. If T_{k}^{-} is tilting, then we put

$$
\mu_{k}^{-}(A):=\operatorname{End}_{\mathcal{D}^{b}(A)}\left(T_{k}^{-}\right)
$$

Similarly, if T_{k}^{+}is tilting, then we put

$$
\mu_{k}^{+}(A):=\operatorname{End}_{\mathcal{D}^{b}(A)}\left(T_{k}^{+}\right)
$$

We call $\mu_{k}^{-}(A)$ and $\mu_{k}^{+}(A)$ the mutations of A at k. For example, if A is the path algebra of the quiver

$$
\stackrel{\bullet}{\bullet} \longrightarrow \stackrel{\bullet}{2} \longrightarrow{ }_{3}^{\bullet},
$$

then $\mu_{1}^{-}(A)$ and $\mu_{3}^{+}(A)$ are not defined, $\mu_{1}^{+}(A)$ and $\mu_{3}^{-}(A)$ are the path algebras of the quivers

$$
\stackrel{\bullet}{\bullet} \longleftarrow \bullet_{2} \longrightarrow{ }_{3}^{\bullet} \quad \text { and } \quad \bullet \longrightarrow \underset{i}{\bullet} \longleftarrow
$$

respectively, while $\mu_{2}^{-}(A)$ and $\mu_{2}^{+}(A)$ are the path algebras of the bound quivers

respectively. If T_{k}^{-}is tilting, then $\mathbb{R} \operatorname{Hom}_{A}\left(T_{k}^{-},-\right)$induces a perverse Morita equivalence in a sense of Chuang and Rouquier with filtration
$\varnothing \subset\{k\} \subset Q_{0}$ and perversity $(0,-1)$. Finally, let $T_{k}^{B B}$ be the BrennerButler module, i.e.

$$
T_{k}^{B B}:=\tau_{A}^{-} S_{k} \oplus \bigoplus_{\substack{i \in Q_{0} \\ i \neq k}} P_{i} .
$$

If $T_{k}^{B B}$ is tilting, then $T_{k}^{B B} \simeq T_{k}^{-}$. On other hand, if T_{k}^{-}is tilting and isomorphic to a module, then $T_{k}^{-} \simeq T_{k}^{B B}$.

Recall that by C_{A} we denote the Cartan matrix of A, i.e.

$$
\left(C_{A}\right)_{i, j}:=\operatorname{dim}_{K} \operatorname{Hom}_{A}\left(P_{i}, P_{j}\right) \quad\left(i, j \in Q_{0}\right)
$$

Moreover, if $\mathrm{gl} . \operatorname{dim} A<\infty$, then by c_{A} we denote the matrix of the Euler form of A, i.e. $c_{A}:=C_{A}^{-\mathrm{T}}$.

Lemma 2.2. Assume T_{k}^{-}is tilting. Then

$$
C_{\mu_{k}^{-}(A)}=r_{k}^{-} \cdot C_{A} \cdot\left(r_{k}^{-}\right)^{\mathrm{T}}
$$

In particular, if gl. $\operatorname{dim} A<\infty$, then

$$
c_{\mu_{k}^{-}(A)}=\left(r_{k}^{-}\right)^{\mathrm{T}} \cdot c_{A} \cdot r_{k}^{-}
$$

3. Application

Throughout this section \mathcal{C} is a K-linear, Hom-finite, 2-Calabi-Yau triangulated category. By ind \mathcal{C} we denote a chosen set of representatives of the isomorphism classes of the indecomposable objects in \mathcal{C}.

By a cluster tilting sequence in \mathcal{C} we mean a sequence

$$
\mathcal{U}=\left(U_{1}, \ldots, U_{n}\right)
$$

of objects from ind \mathcal{C} such that $U:=\bigoplus_{i \in[1, n]} U_{i}$ is maximal rigid, i.e. $\operatorname{Hom}_{\mathcal{C}}(U, U[1])=0$ and if $\operatorname{Hom}_{\mathcal{C}}(U, X[1])=0$ for $X \in \operatorname{ind} \mathcal{C}$, then $X=U_{i}$ for some $i \in[1, n]$. If $\mathcal{U}=\left(U_{1}, \ldots, U_{n}\right)$ is a cluster tilting sequence in \mathcal{C} and $k \in[1, n]$, then there exists unique $X \in \operatorname{ind} \mathcal{C}$ such that $X \not 千 U_{k}$ and the sequence $\mathcal{U}^{\prime}=\left(U_{1}^{\prime}, \ldots, U_{n}^{\prime}\right)$ defined by

$$
U_{i}^{\prime}:=\left\{\begin{array}{ll}
U_{i} & i \neq k, \\
X & i=k,
\end{array} \quad(i \in[1, n])\right.
$$

is cluster tilting (by results of Buan/Marsch/Reineke/Reiten/Todorov and Iyama/Yoshino). In the above situation, we put $\mu_{k}(\mathcal{U}):=\mathcal{U}^{\prime}$ and call \mathcal{U}^{\prime} the cluster tilting mutation of \mathcal{U} at k. For a cluster tilting sequence $\mathcal{U}=\left(U_{1}, \ldots, U_{n}\right)$ we put

$$
\operatorname{End}_{\mathcal{C}}(\mathcal{U}):=\operatorname{End}_{\mathcal{C}}\left(\bigoplus_{i \in[1, n]} U_{i}\right)
$$

Theorem 3.1. Let $\mathcal{U}=\left(U_{1}, \ldots, U_{n}\right)$ be a cluster tilting sequence, $k \in$ $[1, n]$, and

$$
\Lambda:=\operatorname{End}_{\mathcal{C}}(\mathcal{U}) \quad \text { and } \quad \Lambda^{\prime}:=\operatorname{End}_{\mathcal{C}}\left(\mu_{k}(\mathcal{U})\right)
$$

If $\mu_{k}^{B B}(\Lambda)$ and $\mu_{k}^{B B}\left(\Lambda^{\prime \mathrm{op}}\right)$ ar defined, then $\Lambda^{\prime}=\mu_{k}^{B B}(\Lambda)$.

