TANGENT SPACES, MASSEY PRODUCTS, AND APPLICATIONS TO REPRESENTATION THEORY

BASED ON THE TALK BY ANDREW HUBERY

Throughout the presentation K is an algebraically closed field.

Let X be a K-scheme X. For $x \in X(K)$ and $n \in \mathbb{N}_+$ we denote by $T_x^{(n)}X$ the subspace of T_xX consisting of $\xi \in T_xX$ such that there exists $\xi' \in X(K[t]/t^{n+1})$ with $X(\pi)(\xi') = \xi$, where $\pi : K[t]/t^{n+1} \to K[t]/t^2$ is the canonical projection. One shows that

$$\bigcap_{n \in \mathbb{N}_+} T_x^{(n)} X = T_x X_{\mathrm{red}}$$

for generic $x \in X(K)$.

Lemma. Let A be a finitely generated commutative K-algebra, $n \in \mathbb{N}$, and $\alpha_0, \ldots, \alpha_n \in \operatorname{Hom}_K(A, K)$. If

$$\xi: A \to K[t]/t^{n+1}$$
 and $M: A \to \mathbb{M}_{n+1}(K)$

are given by

$$\xi := \sum_{i \in [0,n]} \alpha_i \cdot t^i$$

and

$$T_{i,j} := \begin{cases} \alpha_{j-i} & j \ge i, \\ 0 & otherwise, \end{cases} \quad (i,j \in [1, n+1])$$

then $\xi \in \operatorname{Hom}_{K-\operatorname{alg}}(A, K[t]/t^{n+1})$ if and only if $M \in \operatorname{mod}_A^{n+1}(K)$.

We remark that the above lemma is a reminiscent of the Massey product.

Now we apply the above construction to schemes of modules. For the rest of the presentation Λ is a finitely generated K-algebra and $d \in \mathbb{N}$.

For $M \in \operatorname{mod}_{\Lambda}^{d}(K)$ we put

$$\mathbb{Z}_M := \{ Z \in \operatorname{Hom}_K(A, \mathbb{M}_d(K)) : \begin{bmatrix} M & Z \\ 0 & M \end{bmatrix} \in \operatorname{mod}_{\Lambda}^{2 \cdot d}(K) \}.$$

Then $\mathbb{Z}_M = T_M \operatorname{mod}_{\Lambda}^d$ for each $M \in \operatorname{mod}_{\Lambda}^d(K)$. For $M \in \operatorname{mod}_{\Lambda}^d(K)$ and $n \in \mathbb{N}_+$ we denote by $\mathbb{Z}_M^{(n)}$ the set of all $Z \in \mathbb{Z}_M$ such that there

Date: 16.07.2010.

exist $Z_2, \ldots, Z_n \in \operatorname{Hom}_K(A, \mathbb{M}_d(K))$ with $N \in \operatorname{mod}_{\Lambda}^{(n+1) \cdot d}(K)$, where $N \in \operatorname{Hom}_K(A, \mathbb{M}_{n+1}(\mathbb{M}_d(K)))$ is given by

$$N_{i,j} := \begin{cases} Z_{j-i} & j \ge i, \\ 0 & \text{otherwise,} \end{cases} \quad (i, j \in [1, n+1]),$$

and $Z_0 := M$ and $Z_1 := Z$. Then

n

$$T_M(\mathrm{mod}^d_\Lambda)_{\mathrm{red}} = igcap_{n\in\mathbb{N}_+} \mathbb{Z}_M^{(n)}$$

for generic $M \in \operatorname{mod}_{\Lambda}^{(n)}$. Using this we show that if $M \in \operatorname{mod}_{\Lambda}^{d}(K)$, then $\overline{\mathcal{O}}_{M}$ is an irreducible component of $\operatorname{mod}_{\Lambda}^{d}(K)$ if and only if

$$\bigcap_{\in\mathbb{N}_+} \mathbb{Z}_M^{(n)} = \mathbb{B}_M := \{h \cdot M - M \cdot h : h \in \mathbb{M}_d(K)\}$$

The above construction can be also used in the proof of the following.

Theorem (Crawley-Boevey/Schröer). Let C_1 and C_2 be irreducible components of $\operatorname{mod}_{\Lambda}^{d_1}(K)$ and $\operatorname{mod}_{\Lambda}^{d_2}(K)$ for $d_1, d_2 \in \mathbb{N}$ such that $d_1 + d_2 = d$. Then $\overline{C_1 \oplus C_2}$ is an irreducible component of $\operatorname{mod}_{\Lambda}^d(K)$ if and only if

$$e := \min\{\dim_{K}(\operatorname{Ext}_{\Lambda}^{1}(M_{1}, M_{2}) \oplus \operatorname{Ext}_{\Lambda}^{1}(M_{2}, M_{1})) : M_{1} \in C_{1} \text{ and } M_{2} \in C_{2}\} = 0.$$

Proof. If $\overline{C_1 \oplus C_2}$ is an irreducible component of $\operatorname{mod}_{\Lambda}^d(K)$, then e = 0, since $\mathcal{O}_{N_1 \oplus N_2} \subseteq \overline{\mathcal{O}}_M$ for each exact sequence of the form

$$0 \to N_1 \to M \to N_2 \to 0.$$

Now assume that e = 0. We treat C_1 and C_2 as schemes with the structures induced by the primary ideals in the primary decomposition of 0 corresponding to the prime ideals of C_1 and C_2 , respectively. Let $\Phi : \operatorname{GL}_d \times C_1 \times C_2 \to \operatorname{mod}_{\Lambda}^d$ be given by

$$\Phi(g, M_1, M_2) := g * (M_1 \oplus M_2)$$

(g \in GL_d(K), M_1 \in C_1(K), M_2 \in C_2(K)).

Then

$$\operatorname{Coker} d\Phi_{(1,M_1,M_2)} = \operatorname{Ext}^1_{\Lambda}(M_1,M_2) \oplus \operatorname{Ext}^1_{\Lambda}(M_2,M_1)$$

for generic $M_1 \in C_1(K)$ and $M_2 \in C_2(K)$, hence $d\Phi_{(1,M_1,M_2)}$ is generically surjective, since e = 0. Next, using the assumption e = 0 and the above construction, we show that $d(\Phi_{\text{red}})_{(1,M_1,M_2)}$ is generically surjective, which implies that $\overline{C_1 \oplus C_2} = \overline{\text{Im} \Phi}$ is an irreducible component of $\text{mod}_{\Lambda}^d(K)$.