TANGENT SPACES, MASSEY PRODUCTS, AND APPLICATIONS TO REPRESENTATION THEORY

BASED ON THE TALK BY ANDREW HUBERY

Throughout the presentation K is an algebraically closed field.
Let X be a K-scheme X. For $x \in X(K)$ and $n \in \mathbb{N}_{+}$we denote by $T_{x}^{(n)} X$ the subspace of $T_{x} X$ consisting of $\xi \in T_{x} X$ such that there exists $\xi^{\prime} \in X\left(K[t] / t^{n+1}\right)$ with $X(\pi)\left(\xi^{\prime}\right)=\xi$, where $\pi: K[t] / t^{n+1} \rightarrow K[t] / t^{2}$ is the canonical projection. One shows that

$$
\bigcap_{n \in \mathbb{N}_{+}} T_{x}^{(n)} X=T_{x} X_{\mathrm{red}}
$$

for generic $x \in X(K)$.
Lemma. Let A be a finitely generated commutative K-algebra, $n \in \mathbb{N}$, and $\alpha_{0}, \ldots, \alpha_{n} \in \operatorname{Hom}_{K}(A, K)$. If

$$
\xi: A \rightarrow K[t] / t^{n+1} \quad \text { and } \quad M: A \rightarrow \mathbb{M}_{n+1}(K)
$$

are given by

$$
\xi:=\sum_{i \in[0, n]} \alpha_{i} \cdot t^{i}
$$

and

$$
T_{i, j}:=\left\{\begin{array}{ll}
\alpha_{j-i} & j \geq i, \\
0 & \text { otherwise },
\end{array} \quad(i, j \in[1, n+1])\right.
$$

then $\xi \in \operatorname{Hom}_{K-\operatorname{alg}}\left(A, K[t] / t^{n+1}\right)$ if and only if $M \in \bmod _{A}^{n+1}(K)$.
We remark that the above lemma is a reminiscent of the Massey product.

Now we apply the above construction to schemes of modules. For the rest of the presentation Λ is a finitely generated K-algebra and $d \in \mathbb{N}$.

For $M \in \bmod _{\Lambda}^{d}(K)$ we put

$$
\mathbb{Z}_{M}:=\left\{Z \in \operatorname{Hom}_{K}\left(A, \mathbb{M}_{d}(K)\right):\left[\begin{array}{cc}
M & Z \\
0 & M
\end{array}\right] \in \bmod _{\Lambda}^{2 \cdot d}(K)\right\} .
$$

Then $\mathbb{Z}_{M}=T_{M} \bmod _{\Lambda}^{d}$ for each $M \in \bmod _{\Lambda}^{d}(K)$. For $M \in \bmod _{\Lambda}^{d}(K)$ and $n \in \mathbb{N}_{+}$we denote by $\mathbb{Z}_{M}^{(n)}$ the set of all $Z \in \mathbb{Z}_{M}$ such that there
exist $Z_{2}, \ldots, Z_{n} \in \operatorname{Hom}_{K}\left(A, \mathbb{M}_{d}(K)\right)$ with $N \in \bmod _{\Lambda}^{(n+1) \cdot d}(K)$, where $N \in \operatorname{Hom}_{K}\left(A, \mathbb{M}_{n+1}\left(\mathbb{M}_{d}(K)\right)\right.$ is given by

$$
N_{i, j}:=\left\{\begin{array}{ll}
Z_{j-i} & j \geq i, \\
0 & \text { otherwise },
\end{array} \quad(i, j \in[1, n+1]),\right.
$$

and $Z_{0}:=M$ and $Z_{1}:=Z$. Then

$$
T_{M}\left(\bmod _{\Lambda}^{d}\right)_{\text {red }}=\bigcap_{n \in \mathbb{N}_{+}} \mathbb{Z}_{M}^{(n)}
$$

for generic $M \in \bmod _{\Lambda}^{(n)}$. Using this we show that if $M \in \bmod _{\Lambda}^{d}(K)$, then $\overline{\mathcal{O}}_{M}$ is an irreducible component of $\bmod _{\Lambda}^{d}(K)$ if and only if

$$
\bigcap_{n \in \mathbb{N}_{+}} \mathbb{Z}_{M}^{(n)}=\mathbb{B}_{M}:=\left\{h \cdot M-M \cdot h: h \in \mathbb{M}_{d}(K)\right\}
$$

The above construction can be also used in the proof of the following.
Theorem (Crawley-Boevey/Schröer). Let C_{1} and C_{2} be irreducible components of $\bmod _{\Lambda}^{d_{1}}(K)$ and $\bmod _{\Lambda}^{d_{2}}(K)$ for $d_{1}, d_{2} \in \mathbb{N}$ such that $d_{1}+$ $d_{2}=d$. Then $\overline{C_{1} \oplus C_{2}}$ is an irreducible component of $\bmod _{\Lambda}^{d}(K)$ if and only if

$$
\begin{aligned}
& e:=\min \left\{\operatorname{dim}_{K}\left(\operatorname{Ext}_{\Lambda}^{1}\left(M_{1}, M_{2}\right) \oplus \operatorname{Ext}_{\Lambda}^{1}\left(M_{2}, M_{1}\right)\right):\right. \\
&\left.M_{1} \in C_{1} \text { and } M_{2} \in C_{2}\right\}=0
\end{aligned}
$$

Proof. If $\overline{C_{1} \oplus C_{2}}$ is an irreducible component of $\bmod _{\Lambda}^{d}(K)$, then $e=0$, since $\mathcal{O}_{N_{1} \oplus N_{2}} \subseteq \overline{\mathcal{O}}_{M}$ for each exact sequence of the form

$$
0 \rightarrow N_{1} \rightarrow M \rightarrow N_{2} \rightarrow 0
$$

Now assume that $e=0$. We treat C_{1} and C_{2} as schemes with the structures induced by the primary ideals in the primary decomposition of 0 corresponding to the prime ideals of C_{1} and C_{2}, respectively. Let $\Phi: \mathrm{GL}_{d} \times C_{1} \times C_{2} \rightarrow \bmod _{\Lambda}^{d}$ be given by

$$
\begin{aligned}
& \Phi\left(g, M_{1}, M_{2}\right):=g *\left(M_{1} \oplus M_{2}\right) \\
&\left(g \in \mathrm{GL}_{d}(K), M_{1} \in C_{1}(K), M_{2} \in C_{2}(K)\right) .
\end{aligned}
$$

Then

$$
\operatorname{Coker} d \Phi_{\left(1, M_{1}, M_{2}\right)}=\operatorname{Ext}_{\Lambda}^{1}\left(M_{1}, M_{2}\right) \oplus \operatorname{Ext}_{\Lambda}^{1}\left(M_{2}, M_{1}\right)
$$

for generic $M_{1} \in C_{1}(K)$ and $M_{2} \in C_{2}(K)$, hence $d \Phi_{\left(1, M_{1}, M_{2}\right)}$ is generically surjective, since $e=0$. Next, using the assumption $e=0$ and the above construction, we show that $d\left(\Phi_{\text {red }}\right)_{\left(1, M_{1}, M_{2}\right)}$ is generically surjective, which implies that $\overline{C_{1} \oplus C_{2}}=\overline{\operatorname{Im} \Phi}$ is an irreducible component of $\bmod _{\Lambda}^{d}(K)$.

