ON QUIVER FLAG VARIETIES

BASED ON THE TALK BY JULIA SAUTER

Throughout the presentation K is an algebraically closed field.

Let Q be a quiver and $\mathbf{d} \in \mathbb{N}^{Q_0}$. By $R(\mathbf{d})$ we denote the space of the representations of Q of dimension vector \mathbf{d} . By a **d**-admissible sequence of length $\nu \in \mathbb{N}_+$ we mean every sequence $\mathbf{d} = (\mathbf{d}^1, \ldots, \mathbf{d}^{\nu}) \in (\mathbb{N}^{Q_0})^{\nu}$ such that $\mathbf{d}^{\nu} = \mathbf{d}$ and $\mathbf{d}^k \leq \mathbf{d}^{k+1}$ for each $k \in [1, \nu - 1]$. For a **d**-admissible sequence \mathbf{d} of length ν we put

$$\begin{split} F(\mathbf{d}) &:= \{ U = (U^k)_{k \in [1,\nu]} : U^{\nu} = K^{\mathbf{d}}, \\ \text{and } U^k \subseteq U^{k+1} \text{ and } \dim U^k = \mathbf{d}^k \text{ for each } k \in [1,\nu-1] \} \end{split}$$

and

$$\operatorname{RF}(\operatorname{d}) := \{(M, U) \in R(\operatorname{d}) \times F(\operatorname{d})\}$$

: U^k is a subrepresentation of M for each $k \in [1, \nu]$.

Moreover, we put

$$\langle \mathrm{d}, \mathrm{d} \rangle := \sum_{k \in [1, \nu]} \langle \mathbf{d}^k - \mathbf{d}^{k-1}, \mathbf{d}^k \rangle.$$

In the above situation we have the canonical projections

$$\pi_{d} : \operatorname{RF}(d) \to R(d) \quad \text{and} \quad \mu_{d} : \operatorname{RF}(d) \to F(d).$$

For $M \in R(\mathbf{d})$ we put $\operatorname{Fl}\binom{M}{d} := \pi_{\mathbf{d}}^{-1}(M)$ (these schemes are called quiver flag varieties).

Now we present basic properties of the above construction.

Lemma 1. Let Q be a quiver, $\mathbf{d} \in \mathbb{N}^{Q_0}$, and \mathbf{d} be a **d**-admissible sequence.

- (1) π_{d} is projective, hence $\operatorname{Fl}\binom{M}{d}$ is a projective scheme for each $M \in R(\mathbf{d})$.
- (2) μ is a vector bundle, hence RF(d) is smooth of dimension

$$\langle \mathrm{d}, \mathrm{d} \rangle + \sum_{i \in Q_0} d_i^2$$

Lemma 2. Let Q be a quiver, $\mathbf{d} \in \mathbb{N}^{Q_0}$, and \mathbf{d} be a \mathbf{d} -admissible sequence. If $\operatorname{Im} \pi_{\mathbf{d}} = \overline{\mathcal{O}}_M$ for some $M \in R(d)$, then $\operatorname{Fl}\binom{M}{\mathbf{d}}$ is smooth and irreducible of dimension

 $\dim \operatorname{RF}(\operatorname{d}) - \dim R(\operatorname{d}) + \dim_K \operatorname{Ext}^1_O(M, M).$

Date: 16.07.2010.

JULIA SAUTER

Let Q be a quiver and $\mathbf{d} \in \mathbb{N}^{Q_0}$. If $M \in R(\mathbf{d})$ and \mathbf{d} is a **d**-admissible sequence, then we call (M, \mathbf{d}) a resolution pair if $\pi_{\mathbf{d}}$ is a resolution of singularities of $\overline{\mathcal{O}}_M$ (in particular, $\operatorname{Im} \pi_{\mathbf{d}} = \overline{\mathcal{O}}_M$).

Lemma 3. Let Q be a quiver and $\mathbf{d} \in \mathbb{N}^{Q_0}$. If $M \in R(\mathbf{d})$ and \mathbf{d} is a \mathbf{d} -admissible sequence, then (M, \mathbf{d}) is a resolution pair if and only if $\operatorname{Fl}\binom{M}{d} \neq \emptyset$ and $\langle \mathbf{d}, \mathbf{d} \rangle = \dim_K \operatorname{End}_Q(M)$.

Corollary 4. Let Q be a quiver and $M_1, \ldots, M_{\nu}, \nu \in \mathbb{N}_+$, representations of Q. If

- Hom_Q $(M_l, M_k) = 0$ for all $l, k \in [1, \nu]$ such that l < k, and
- $\operatorname{Ext}_{Q}^{1}(M_{l}, M_{k}) = 0$ for all $l, k \in [1, \nu]$ such that $l \geq k$,

then (M, d) is a resolution pair, where $M := \bigoplus_{k=1}^{\nu} M_k$ and

$$\mathbf{d}^k := \sum_{l \in [1,k]} \dim M_l \qquad (k \in [1,\nu]).$$

In particular, the above corollary implies that if Q is a Dynkin quiver, then for each representation M of Q there exists an admissible sequence d such that (M, d) is a resolution pair. On the other hand, if

$$Q = \bullet$$
 and $M = K$ $I = K$

then $\langle \mathbf{d}, \mathbf{d} \rangle = 0$ for each **dim** *M*-admissible sequence **d** such that $\operatorname{Fl}\binom{M}{\mathbf{d}} \neq \emptyset$, hence there is no resolution pair of the form (M, \mathbf{d}) . Next, if

$$Q = \bigoplus_{1} \underbrace{\frown}_{2}$$
 and $M = P_2 \oplus I_1,$

then (M, d), where $d := (\dim I_1, \dim M)$, is a resolution pair. However, Zwara has showed that $\overline{\mathcal{O}}_M$ is not normal, so π_d is not a crepant resolution.

Let Q be a quiver, $\mathbf{d} \in \mathbb{N}^{Q_0}$, and \mathbf{d} is a **d**-admissible sequence of length ν . If $M \in R(\mathbf{d})$, then $\operatorname{Fl}\binom{M}{\mathbf{d}}$ is in general neither irreducible nor reduced (not even generically). Wolf has showed that if $M \in R(\mathbf{d})$ and $U \in \operatorname{Fl}\binom{M}{\mathbf{d}}$, then

$$T_U \operatorname{Fl} \begin{pmatrix} M \\ d \end{pmatrix} = \operatorname{Hom}_{Q \otimes A_{\nu}}(U, M/U)$$

and we have a short exact sequence

$$0 \to \operatorname{Hom}_{Q \otimes A_{\nu}}(U, M/U) \to T_U \operatorname{RF}(d) \to T_U(d) \to \operatorname{Ext}^1_{Q \otimes A_{\nu}}(U, M/U) \to 0,$$

where

$$A_{\nu} := \underbrace{\bullet}_{1} \xrightarrow{\alpha_{1}} \underbrace{\bullet}_{2} \xrightarrow{\alpha_{2}} \cdots \xrightarrow{\alpha_{\nu-1}} \underbrace{\bullet}_{\nu}$$

 $\mathbf{2}$

and we identify M with the Q-representation

$$M \xrightarrow{\operatorname{Id}_M} M \xrightarrow{\operatorname{Id}_M} \cdots \xrightarrow{\operatorname{Id}_M} M$$

of A_{ν} .

Theorem 5. Let Q be a connected quiver and $\nu \in \mathbb{N}_+$.

- (1) $Q \otimes A_{\nu}$ is of finite type if and only if one of the following conditions is satisfied:
 - Q is of Dynkin type and $\nu = 1$,
 - Q is of one of the types \mathbb{A}_3 and \mathbb{A}_4 , and $\nu \leq 2$,
 - Q is of type \mathbb{A}_2 and $\nu \leq 4$,
 - Q is of type \mathbb{A}_1 .
- (2) $Q \otimes A_{\nu}$ is of infinite tame type if and only if one of the following conditions is satisfied:
 - Q is of Euclidean type and $\nu = 1$,
 - Q is of one of the types \mathbb{A}_5 and \mathbb{D}_4 , and $\nu = 2$,
 - Q is of type \mathbb{A}_3 and $\nu = 3$.

Let Q be a a quiver and $\nu \in \mathbb{N}_+$. By $\mathbb{X}(Q, \nu)$ we denote the full subcategory of the category of the Q-representations of A_{ν} consisting of the representations U such that U^{α_i} is a monomorphism for each $i \in [1, \nu - 1]$. Note that if $\mathbf{d} \in \mathbb{N}^{Q_0}$ and \mathbf{d} is a **d**-admissible sequence of length ν , then the GL(**d**)-orbits in RF(**d**) correspond to the isomorphism classes of the objects in $\mathbb{X}(Q, \nu)$ of dimension vector \mathbf{d} . Moreover, if $M \in R(\mathbf{d})$, then the Aut_K(M)-orbits in Fl $\binom{M}{\mathbf{d}}$ correspond to the isomorphism classes of the objects U in $\mathbb{X}(Q, \nu)$ such that $U^{\nu} \simeq M$.

Theorem 6. Let Q be a connected quiver and $\nu \in \mathbb{N}_+$. Then $\mathbb{X}(Q, \nu)$ is of finite type if and only if one the following conditions is satisfied:

- Q is of Dynkin type and $\nu = 1$,
- Q is of type \mathbb{A}_4 , or $Q = A_5$, or Q or Q^{op} is the quiver

 $\bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet \longleftarrow \bullet \longleftarrow \bullet ,$

and $\nu \leq 2$,

- Q is of type \mathbb{A}_3 and $\nu \leq 3$,
- $Q = A_3$ and $\nu \leq 4$,
- Q is of one of the types \mathbb{A}_1 and \mathbb{A}_2 .