THE COMBINATORICS AROUND AN INFINITE IDEMPOTENT MATRIX

BASED ON THE TALK BY DOLORS HERBERA

First we recall the following theorem.
Theorem (Prihoda). Let R be a ring and P and Q be projective right R-modules. Then P and Q are isomorphic if and only if $P / P \cdot J(R) \simeq$ $Q / Q \cdot J(R)$, where $J(R)$ is the Jacobson radical of R.

Let E be a countable column-finite idempotent matrix with coefficients in a ring R. If $P:=E \cdot R^{(\mathbb{N})}$, then P is a projective right R-module. Moreover, every countably generated projective right R module is of this form. Let

$$
I:=\sum_{i, j \in \mathbb{N}} R \cdot E(i, j) \cdot R .
$$

We call the ideals of this form trace ideals. For $k \in \mathbb{N}$ we put

$$
I_{k}^{\prime}:=\sum_{\substack{i, j \in \mathbb{N} \\ j \leq k}} R \cdot E(i, j) .
$$

Since $E^{2}=E$, for each $k \in \mathbb{N}$ there exists $l>k$ such that $I_{l}^{\prime} \cdot I_{k}^{\prime}=I_{k}^{\prime}$. Consequently, there exists a chain

$$
I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots
$$

of finitely generated left ideals such that

$$
I_{n+1} \cdot I_{n}=I_{n}
$$

for each $n \in \mathbb{N}$ and

$$
I=\bigcup_{n \in \mathbb{N}} I_{n} .
$$

We have the following theorem.
Theorem (Whitehead). A two-sided ideal I of a ring R is a trace ideal if and only if there exists a chain

$$
I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots
$$

of finitely generated left ideals such that

$$
I_{n+1} \cdot I_{n}=I_{n}
$$

for each $n \in \mathbb{N}$ and

$$
I=\bigcup_{n \in \mathbb{N}} I_{n} .
$$

Date: 01.07.2011.

As a consequence of the above theorem we obtain the following facts:
(1) If I and I^{\prime} are trace ideals, then $I=I^{\prime}$ if and only if $I+J(R)=$ $I^{\prime}+J(R)$.
(2) If I is a trace ideal and $R / J(R)$ is noetherian, then $I=L \cdot R$ for a finitely generated left ideal L such that $L^{2}=L$.
(3) If I is a trace ideal and M is a countably generated right projective R / I-module, then there exists a countable column-finite matrix E such that $M \simeq P / P \cdot I$ and

$$
I=\sum_{i, j \in \mathbb{N}} R \cdot E(i, j) \cdot R
$$

where $P:=E \cdot R^{(\mathbb{N})}$.
Now assume again that E is a countable column-finite idempotent matrix with coefficients in a ring R and $P:=E \cdot R^{(\mathbb{N})}$. For $k \in \mathbb{N}$ we put

$$
L_{k}^{\prime}:=\sum_{\substack{i, j \in \mathbb{N} \\ i \geq k}} E(i, j) \cdot R
$$

Using again the assumption $E^{2}=E$ we obtain that for each $k \in \mathbb{N}$ there exists $l>k$ such that

$$
L_{l}^{\prime} \cdot L_{k}^{\prime}=L_{l}^{\prime}
$$

Consequently, there exists a chain

$$
L_{0} \supseteq L_{1} \supseteq L_{2} \supseteq \cdots
$$

of right ideals such that

$$
L_{n+1} \cdot L_{n}=L_{n+1}
$$

for each $n \in \mathbb{N}$. Moreover, $P / P \cdot L_{n}$ is finitely generated for every $n \in \mathbb{N}$ and for every ideal K such that $P / P \cdot K$ is finitely generated there exists $n \in \mathbb{N}$ such that $K \supseteq L_{n}$. There exists unique minimal element in the set $\mathcal{I}(P)$ of ideals K of R such that $P / P \cdot K$ is finitely generated if and only if the sequence

$$
L_{0} \supseteq L_{1} \supseteq L_{2} \supseteq \cdots
$$

becomes stationary.
Assume now that for every chain

$$
L_{0} \supseteq L_{1} \supseteq L_{2} \supseteq \cdots
$$

of right ideals such that

$$
L_{n+1} \cdot L_{n}=L_{n+1}
$$

for each $n \in \mathbb{N}$, becomes stationary. This condition is satisfied for example for integral group rings of finite groups. For each countably generated projective R-module P we denote by L_{P} the minimal element in $\mathcal{I}(P)$.

Theorem (Prihoda). Assume in addition that R is noetherian. If P and Q are countably generated, then P and Q are isomorphic if and only if $L_{P}=L_{Q}$ and $P / P \cdot L_{P} \simeq Q / Q \cdot L_{P}$.

For a ring R we denote by $V(R)$ the set of the isomorphism classes of a countably generated projective right R-modules. It is a commutative monoid with an addition given by direct sums.

Now assume that R is semilocal, i.e.

$$
R / J(R) \simeq \mathbb{M}_{n_{1}}\left(D_{1}\right) \times \cdots \times \mathbb{M}_{n_{k}}\left(D_{k}\right)
$$

for some division rings D_{1}, \ldots, D_{k} and positive integers n_{1}, \ldots, n_{k}. For each $i \in[1, k]$ we fix a simple $\mathbb{M}_{n_{i}}\left(D_{i}\right)$-module V_{i}. Then for each projective right R-module P there exist sets I_{1}, \ldots, I_{k} such that

$$
P / P \cdot J(R) \simeq V_{1}^{\left(I_{1}\right)} \oplus \cdots \oplus V_{k}^{\left(I_{k}\right)}
$$

Thus we may associate to P the element $\left(\left|I_{1}\right|, \ldots,\left|I_{k}\right|\right)$ the monoid $\left(\mathbb{N}^{*}\right)^{k}$, where $\mathbb{N}^{*}:=\mathbb{N} \cup\{\infty\}$. This assignment induces a monomorphism $\operatorname{dim}: V(R) \rightarrow\left(\mathbb{N}^{*}\right)^{k}$ of monoids. The following theorem describes the submonoids of $\left(\mathbb{N}^{*}\right)^{k}$ which can be obtained as the images of the maps of the above form.
Theorem (Herbera/Prihoda). Let n_{1}, \ldots, n_{k} be positive integers. If M is a submonoid of $\left(\mathbb{N}^{*}\right)^{k}$ such that $\left(n_{1}, \ldots, n_{k}\right) \in M$, then there exists a semilocal noetherian ring R such that

$$
R / J(R) \simeq M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{k}}\left(D_{k}\right)
$$

for some division rings D_{1}, \ldots, D_{k} and $\operatorname{dim}(V(R))=M$ if and only if there exists matrices D, E_{1} and E_{2} with nonnegative integral coefficients and a vector m with nonnegative integral coefficients such that

$$
M=\left\{x \in\left(\mathbb{N}^{*}\right)^{k}: E_{1} \cdot x=E_{2} \cdot x \text { and } D \cdot x \in \mathbb{N}^{*} \cdot m\right\}
$$

As an application of the above theorem we obtain that there exists a semilocal noetherian ring R such that

$$
R / J(R) \simeq M_{2}\left(D_{1}\right) \times D_{2}
$$

for some division rings D_{1} and D_{2} and

$$
\operatorname{dim}(V(R))=\langle(2,1),(\infty, \infty),(0, \infty),(1, \infty)\rangle
$$

Indeed,

$$
\langle(2,1),(\infty, \infty),(0, \infty),(1, \infty)\rangle=\left\{(x, y) \in\left(\mathbb{N}^{*}\right)^{2}: x+2 \cdot y=3 \cdot y\right\}
$$

Similarly,

$$
\langle(2,1),(\infty, \infty),(0, \infty)\rangle=\left\{(x, y) \in\left(\mathbb{N}^{*}\right)^{2}: x+2 \cdot y=3 \cdot y \text { and } 2 \mid x\right\}
$$

