THE CONNECTION BETWEEN BRAID GROUP ACTIONS ON EXCEPTIONAL SEQUENCES, THICK SUBCATEGORIES, AND NON-CROSSING PARTITIONS

BASED ON THE TALK BY CLAUDIA KÖHLER

Let H be a finite dimensional hereditary algebra over a field k. We define the Euler bilinear form on the Grothendieck group $K_0(H)$ by the condition:

 $\langle [V], [W] \rangle = \dim_k \operatorname{Hom}_H(V, W) - \dim_k \operatorname{Ext}^1_H(V, W)$

for *H*-modules *V* and *W*. Next, for $\alpha, \beta \in K_0(H)$ we put

$$(\alpha,\beta) := \langle \alpha,\beta \rangle + \langle \beta,\alpha \rangle.$$

Finally, for $\beta \in K_0(H)$ we define $s_\beta \in GL(K_0(H))$ by the formula:

$$s_{\beta}(\alpha) := \alpha - (\alpha, \beta) \cdot \beta$$

for $\alpha \in K_0(H)$. If $\{S_1, \ldots, S_n\}$ is a complete set of pairwise nonisomorphic simple *H*-modules, then we denote by W_H the subgroup of $\operatorname{GL}(K_0(H))$ generated by the maps $s_{[S_1]}, \ldots, s_{[S_n]}$. An element *t* of W_H is called a reflection if there exist $w \in W_H$ and $i \in \{1, \ldots, n\}$ such that $t = w \cdot s_{[S_i]} \cdot w^{-1}$. For $w \in W_H$ we define its absolute length $\ell(w)$ as the minimal $r \in \mathbb{N}$ such that $w = x_1 \cdot \ldots \cdot x_r$ for some reflections x_1, \ldots, x_r . Let $c := s_{[S_1]} \cdot \ldots \cdot s_{[S_n]}$. We call *c* a Coxeter element. One shows that $\ell(c) = n$. An element *w* of W_H is called a non-crossing partition if $\ell(w) + \ell(w^{-1} \cdot c) = \ell(c)$.

For example, let H be the path algebra of the quiver

$$\bullet_1 \longrightarrow \bullet_2 \longrightarrow \cdots \longrightarrow \bullet_n$$
.

For $i \in \{1, \ldots, n\}$ let S_i be the simple module at vertex i. Then W_H is isomorphic to \mathfrak{S}_{n+1} via the isomorphism which sens the reflection $s_{[S_i]}$ to the transposition (i, i + 1) for each $i \in \{1, \ldots, n\}$. We want to describe the non-crossing partitions in W_H with respect to c := $s_{[S_1]} \cdots s_{[S_n]}$. First, for each subset I of $\{1, \ldots, n+1\}$ we denote by σ_I the permutation (i_1, \ldots, i_t) provided $I = \{i_1, \ldots, i_t\}$ and $i_1 < \ldots < i_t$. We call two subsets I and J of $\{1, \ldots, n+1\}$ non-crossing if there are no $i_1, i_2, i_3, i_4 \in \{1, \ldots, n+1\}$ such that $i_1 < i_2 < i_3 < i_4$ and either $i_1, i_3 \in I$ and $i_2, i_4 \in J$ or vice versa. If \mathcal{N} is the set of all partitions of the set $\{1, \ldots, n+1\}$ into pairwise non-crossing subsets, then the map which assigns to a partition $\{I_1, \ldots, I_s\}$ the permutation $\sigma_{I_1} \cdot \ldots \cdot \sigma_{I_s}$

Date: 20.07.2011.

is a bijection between \mathcal{N} and the set of non-crossing partitions in W_H with respect to c.

Let again H be an arbitrary finite dimensional hereditary algebra over a field k. A full subcategory S of mod H is called thick if Sis closed under direct summands and $X_1, X_2, X_3 \in S$ for each exact sequence $0 \to X_1 \to X_2 \to X_3 \to 0$ such that $|\{i \in \{1, 2, 3\} :$ $X_i \in S\}| \geq 2$. A sequence (E_1, \ldots, E_r) of indecomposable H-modules is called exceptional if $\operatorname{Ext}^1_H(E_i, E_i) = 0$ for each $i \in \{1, \ldots, n\}$ and $\operatorname{Hom}_H(E_j, E_i) = 0 = \operatorname{Ext}^1_H(E_j, E_i)$ for all $i, j \in \{1, \ldots, n\}$ such that i < j. We call the sequence (E_1, \ldots, E_r) complete if r equals the number of the isomorphism classes of the simple H-modules. For an exceptional sequence (E_1, \ldots, E_r) we denote by $\operatorname{Thick}(E_1, \ldots, E_r)$ the smallest thick subcategory of mod H containing the modules E_1, \ldots, E_r .

Theorem (Igusa/Schiffler, Ingalls/Thomas). Let H be the path algebra of an acyclic quiver and let $\{S_1, \ldots, S_n\}$ be a complete set of pairwise non-isomorphic simple H-modules. If (S_1, \ldots, S_n) is an exceptional sequence and $c := s_{[S_1]} \cdot \ldots \cdot s_{[S_n]}$, then the assignment

$$(E_1,\ldots,E_r)\mapsto s_{[E_1]}\cdot\ldots\cdot s_{[E_r]}$$

induces a bijection between the thick subcategories generated by exceptional sequences and the non-crossing partitions in W_H with respect to c.

For a positive integer n we denote by B_n be the braid group on n strands, i.e. the group generated by elements $\sigma_1, \ldots, \sigma_{n-1}$ such that $\sigma_i \cdot \sigma_j = \sigma_j \cdot \sigma_i$ for all $i, j \in \{1, \ldots, n-1\}$ with |i-j| > 1 and $\sigma_i \cdot \sigma_{i+1} \cdot \sigma_i = \sigma_{i+1} \cdot \sigma_i \cdot \sigma_{i+1}$ for each $i \in \{1, \ldots, n-2\}$. Now let H be a finite dimensional hereditary algebra over a field k with n isomorphism classes of the simple H-modules. We fix a Coxeter element c in W_H . We have the action of B_n on the set \mathcal{X} of all sequences (x_1, \ldots, x_n) of reflections in W_H such that $x_1 \cdot \ldots \cdot x_n = c$ defined by the following:

$$\sigma_i \cdot (x_1, \dots, x_n) := (x_1, \dots, x_{i-1}, x_i x_{i+1} x_i^{-1}, x_i, x_{i+2}, \dots, x_n)$$

for $i \in \{1, \ldots, n-1\}$ and $(x_1, \ldots, x_n) \in \mathcal{X}$. Moreover, we also want to define an action of B_n on the set \mathcal{E} of the complete exceptional sequences. First, one shows that if $(E_1, \ldots, E_n) \in \mathcal{E}$ and $i \in \{1, \ldots, n-1\}$, then there exists unique indecomposable *H*-module *X* such that $(E_1, \ldots, E_{i-1}, X, E_i, E_{i+2}, \ldots, E_n) \in \mathcal{E}$. In the above situation we put

$$\sigma_i \cdot (E_1, \ldots, E_n) := (E_1, \ldots, E_{i-1}, X, E_i, E_{i+2}, \ldots, E_n),$$

and this definition induces the action of B_n on \mathcal{E} .

Theorem (Crawley-Boevey, Ringel, Igusa/Schiffler). Let H be be a finite dimensional hereditary algebra over a field k and let $\{S_1, \ldots, S_n\}$ be a complete set of pairwise non-isomorphic simple H-modules. If

 (S_1, \ldots, S_n) is an exceptional sequence and $c := s_{[S_1]} \cdot \ldots \cdot s_{[S_n]}$, then the above described actions of B_n on \mathcal{X} and \mathcal{E} are transitive. Moreover, if $\sigma \in B_n$, $(E_1, \ldots, E_n) \in \mathcal{E}$ and $(E'_1, \ldots, E'_n) := \sigma \cdot (E_1, \ldots, E_n)$, then

$$\sigma(s_{[E_1]},\ldots,s_{[E_n]}) = (s_{[E'_1]},\ldots,s_{[E'_n]}).$$

Using the above theorem we may find the thick subcategory corresponding to a given non-crossing partition w. Namely, if $\ell(w) = r$, then there exist reflections $x_1, \ldots, x_r \in W_H$ such that $w = x_1 \cdot \ldots \cdot x_r$. Since w is a non-crossing partition, there exist reflections $x_{r+1}, \ldots, x_n \in W_H$ such that $x_1 \cdot \ldots \cdot x_n = c$. According to the above theorem we may find an element $\sigma \in B_n$ such that $\sigma \cdot (s_{[S_1]}, \ldots, s_{[S_n]}) = (x_1, \ldots, x_n)$. If $(E_1, \ldots, E_n) := \sigma \cdot (S_1, \ldots, S_n)$, then w corresponds to the category Thick (E_1, \ldots, E_r)