
TRANSITIVITY OF THE BRAID GROUP ACTION
FOR COXETER GROUPS (AFTER IGUSA-SCHIFFLER)

BASED ON THE TALK BY DIRK KUSSIN

Fix a positive integer n and a symmetric n × n matrix m, whose
coefficients are non-negative integers such that m(i, i) = 1 for each
i ∈ {1, . . . , n} and m(i, j) 6= 1 for all i, j ∈ {1, . . . , n} with i 6= j. By
the Coxeter group W associated with these data we mean the group
generated by the elements s1, . . . , sn subject to the conditions (si ·
sj)

mi,j = 1 for all i, j ∈ {1, . . . , n}.
We present a geometric interpretation of this group. Let α1, . . . , αn

be the standard basis vectors of V := Rn. We define the symmetric
bilinear form B on V by

B(αi, αj) :=

{
−1 if mi,j = 0,

− cos( π
mi,j

) if mi,j 6= 0,

for i, j ∈ {1, . . . , n}. For i ∈ {1, . . . , n} we define σi : V → V by

σi(x) := x− 2 ·B(αi, x) · αi
for x ∈ V . One shows that the assignment

si 7→ σi, i ∈ {1, . . . , n},
induces an injective group homomorphism W → GL(V ), which we
treat as identification.

Let
Φ := {w(αi) : w ∈ W and i ∈ {1, . . . ,m}}.

We call the elements of Φ roots. Let

Φ+ := {x ∈ Φ : x ≥ 0} and Φ− := {x ∈ Φ : x ≤ 0}.
Then Φ = Φ+ ∪ Φ−. For α ∈ Φ we define sα : V → V by

sα(x) := x− 2 ·B(α, x) · α.
One easily checks that sw(α) = w · sα · w−1 for all α ∈ Φ and w ∈ W .
Consequently, the assignment

α 7→ sα, α ∈ Φ+,

is a bijection between Φ+ and

R := {w · si · w−1 : w ∈ W and i ∈ {1, . . . , n}}
(we call the elements of R reflections).
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For a positive integer m we denote by Bm be the braid group on m
strands, i.e. the group generated by the elements σ1, . . . , σm−1 such
that σi · σj = σj · σi for all i, j ∈ {1, . . . ,m − 1} with |i − j| > 1 and
σi ·σi+1 ·σi = σi+1 ·σi ·σi+1 for each i ∈ {1, . . . ,m− 2}. For each group
G we have the action of Bm on Gm defined by the condition:

σi · (g1, . . . , gm) = (g1, . . . , gi−1, gi · gi+1 · g−1i , gi, gi+2, . . . , gm)

for all i ∈ {1, . . . ,m− 1} and g1, . . . , gm ∈ G. Note that

g′1 · . . . · g′m = g1 · . . . · gm
for all σ ∈ Bm and g1, . . . , gm ∈ G, where

(g′1, . . . , g
′
m) := σ · (g1, . . . , gm).

Next, we also have the action of Bm on (Φ+)m defined by the condition:

σi · (β1, . . . , βm) = (β1, . . . , βi−1, |sβi(βi+1)|, βi, βi+2, . . . , βm)

for all i ∈ {1, . . . ,m− 1} and g1, . . . , gm ∈ G. Observe that the above
action is compatible with the action of Bm on Wm under the map which
sends (β1, . . . , βm) ∈ Bm to (sβ1 , . . . , sβm).

The aim of this talk is to sketch the proof of the following theorem.

Theorem (Igusa/Schiffler). If t1, . . . , tm ∈ R and t1·. . .·tm = s1·. . .·sn,
then m ≥ n. Moreover, if m = n, then there exists σ ∈ Bn such that

(t1, . . . , tm) = σ · (s1, . . . , sn).

Without loss of generality we may assume that m ≤ n. We also
fix β1, . . . , βm ∈ Φ+ such that ti = sβi for all i ∈ {1, . . . ,m}. Let
c := s1 · . . . · sn. A root p ∈ Φ+ is called projective if c(p) < 0. One
shows that we have exactly n projective roots, namely p1, . . . , pn, where
pi := (sn · . . . · si+1)(αi) for i ∈ {1, . . . , n}. The crucial point in the
proof, whose proof we omit, is to observe that there exists σ ∈ Bm such
that

σ · (β1, . . . , βm) = (pi1 , . . . , pim)

for some i1, . . . , im ∈ {1, . . . , n} such that i1 > . . . > im. Since

spi = sn · . . . · si · . . . sn
for each i ∈ {1, . . . , n}, by exploiting the equality

spi1 · . . . · spim = s1 · . . . · sn
we obtain the equality

s1 · . . . · ˆsim · . . . · ŝi1 · . . . · sn = 1,

which implies that {i1, . . . , im} = {1, . . . , n}, hence finishes the proof.


