TRANSITIVITY OF THE BRAID GROUP ACTION FOR COXETER GROUPS (AFTER IGUSA-SCHIFFLER)

BASED ON THE TALK BY DIRK KUSSIN

Fix a positive integer n and a symmetric $n \times n$ matrix m, whose coefficients are non-negative integers such that $m(i, i)=1$ for each $i \in\{1, \ldots, n\}$ and $m(i, j) \neq 1$ for all $i, j \in\{1, \ldots, n\}$ with $i \neq j$. By the Coxeter group W associated with these data we mean the group generated by the elements s_{1}, \ldots, s_{n} subject to the conditions $\left(s_{i}\right.$. $\left.s_{j}\right)^{m_{i, j}}=1$ for all $i, j \in\{1, \ldots, n\}$.

We present a geometric interpretation of this group. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the standard basis vectors of $V:=\mathbb{R}^{n}$. We define the symmetric bilinear form B on V by

$$
B\left(\alpha_{i}, \alpha_{j}\right):= \begin{cases}-1 & \text { if } m_{i, j}=0, \\ -\cos \left(\frac{\pi}{m_{i, j}}\right) & \text { if } m_{i, j} \neq 0,\end{cases}
$$

for $i, j \in\{1, \ldots, n\}$. For $i \in\{1, \ldots, n\}$ we define $\sigma_{i}: V \rightarrow V$ by

$$
\sigma_{i}(x):=x-2 \cdot B\left(\alpha_{i}, x\right) \cdot \alpha_{i}
$$

for $x \in V$. One shows that the assignment

$$
s_{i} \mapsto \sigma_{i}, i \in\{1, \ldots, n\},
$$

induces an injective group homomorphism $W \rightarrow \mathrm{GL}(V)$, which we treat as identification.
Let

$$
\Phi:=\left\{w\left(\alpha_{i}\right): w \in W \text { and } i \in\{1, \ldots, m\}\right\} .
$$

We call the elements of Φ roots. Let

$$
\Phi^{+}:=\{x \in \Phi: x \geq 0\} \quad \text { and } \quad \Phi^{-}:=\{x \in \Phi: x \leq 0\} .
$$

Then $\Phi=\Phi^{+} \cup \Phi^{-}$. For $\alpha \in \Phi$ we define $s_{\alpha}: V \rightarrow V$ by

$$
s_{\alpha}(x):=x-2 \cdot B(\alpha, x) \cdot \alpha .
$$

One easily checks that $s_{w(\alpha)}=w \cdot s_{\alpha} \cdot w^{-1}$ for all $\alpha \in \Phi$ and $w \in W$. Consequently, the assignment

$$
\alpha \mapsto s_{\alpha}, \alpha \in \Phi^{+},
$$

is a bijection between Φ^{+}and

$$
R:=\left\{w \cdot s_{i} \cdot w^{-1}: w \in W \text { and } i \in\{1, \ldots, n\}\right\}
$$

(we call the elements of R reflections).

For a positive integer m we denote by B_{m} be the braid group on m strands, i.e. the group generated by the elements $\sigma_{1}, \ldots, \sigma_{m-1}$ such that $\sigma_{i} \cdot \sigma_{j}=\sigma_{j} \cdot \sigma_{i}$ for all $i, j \in\{1, \ldots, m-1\}$ with $|i-j|>1$ and $\sigma_{i} \cdot \sigma_{i+1} \cdot \sigma_{i}=\sigma_{i+1} \cdot \sigma_{i} \cdot \sigma_{i+1}$ for each $i \in\{1, \ldots, m-2\}$. For each group G we have the action of B_{m} on G^{m} defined by the condition:

$$
\sigma_{i} \cdot\left(g_{1}, \ldots, g_{m}\right)=\left(g_{1}, \ldots, g_{i-1}, g_{i} \cdot g_{i+1} \cdot g_{i}^{-1}, g_{i}, g_{i+2}, \ldots, g_{m}\right)
$$

for all $i \in\{1, \ldots, m-1\}$ and $g_{1}, \ldots, g_{m} \in G$. Note that

$$
g_{1}^{\prime} \cdot \ldots \cdot g_{m}^{\prime}=g_{1} \cdot \ldots \cdot g_{m}
$$

for all $\sigma \in B_{m}$ and $g_{1}, \ldots, g_{m} \in G$, where

$$
\left(g_{1}^{\prime}, \ldots, g_{m}^{\prime}\right):=\sigma \cdot\left(g_{1}, \ldots, g_{m}\right)
$$

Next, we also have the action of B_{m} on $\left(\Phi^{+}\right)^{m}$ defined by the condition:

$$
\sigma_{i} \cdot\left(\beta_{1}, \ldots, \beta_{m}\right)=\left(\beta_{1}, \ldots, \beta_{i-1},\left|s_{\beta_{i}}\left(\beta_{i+1}\right)\right|, \beta_{i}, \beta_{i+2}, \ldots, \beta_{m}\right)
$$

for all $i \in\{1, \ldots, m-1\}$ and $g_{1}, \ldots, g_{m} \in G$. Observe that the above action is compatible with the action of B_{m} on W^{m} under the map which sends $\left(\beta_{1}, \ldots, \beta_{m}\right) \in B^{m}$ to $\left(s_{\beta_{1}}, \ldots, s_{\beta_{m}}\right)$.

The aim of this talk is to sketch the proof of the following theorem.
Theorem (Igusa/Schiffler). If $t_{1}, \ldots, t_{m} \in R$ and $t_{1} \cdot \ldots \cdot t_{m}=s_{1} \cdot \ldots \cdot s_{n}$, then $m \geq n$. Moreover, if $m=n$, then there exists $\sigma \in B_{n}$ such that

$$
\left(t_{1}, \ldots, t_{m}\right)=\sigma \cdot\left(s_{1}, \ldots, s_{n}\right)
$$

Without loss of generality we may assume that $m \leq n$. We also fix $\beta_{1}, \ldots, \beta_{m} \in \Phi^{+}$such that $t_{i}=s_{\beta_{i}}$ for all $i \in\{1, \ldots, m\}$. Let $c:=s_{1} \cdot \ldots \cdot s_{n}$. A root $p \in \Phi^{+}$is called projective if $c(p)<0$. One shows that we have exactly n projective roots, namely p_{1}, \ldots, p_{n}, where $p_{i}:=\left(s_{n} \cdot \ldots \cdot s_{i+1}\right)\left(\alpha_{i}\right)$ for $i \in\{1, \ldots, n\}$. The crucial point in the proof, whose proof we omit, is to observe that there exists $\sigma \in B_{m}$ such that

$$
\sigma \cdot\left(\beta_{1}, \ldots, \beta_{m}\right)=\left(p_{i_{1}}, \ldots, p_{i_{m}}\right)
$$

for some $i_{1}, \ldots, i_{m} \in\{1, \ldots, n\}$ such that $i_{1}>\ldots>i_{m}$. Since

$$
s_{p_{i}}=s_{n} \cdot \ldots \cdot s_{i} \cdot \ldots s_{n}
$$

for each $i \in\{1, \ldots, n\}$, by exploiting the equality

$$
s_{p_{i_{1}}} \cdot \ldots \cdot s_{p_{i_{m}}}=s_{1} \cdot \ldots \cdot s_{n}
$$

we obtain the equality

$$
s_{1} \cdot \ldots \cdot \hat{s_{i_{m}}} \cdot \ldots \cdot \hat{s_{i_{1}}} \cdot \ldots \cdot s_{n}=1
$$

which implies that $\left\{i_{1}, \ldots, i_{m}\right\}=\{1, \ldots, n\}$, hence finishes the proof.

