THE SIMPLE TRANSITIVITY OF THE BRAID GROUP ACTION AND NONCROSSING LOOPS (AFTER BESSIS)

BASED ON THE TALK BY PHILIPP LAMPE

For a positive integer n we denote by B_{n} be the braid group on n strands, i.e. the group generated by the elements $\sigma_{1}, \ldots, \sigma_{n-1}$ such that $\sigma_{i} \cdot \sigma_{j}=\sigma_{j} \cdot \sigma_{i}$ for all $i, j \in\{1, \ldots, n-1\}$ with $|i-j|>1$ and $\sigma_{i} \cdot \sigma_{i+1} \cdot \sigma_{i}=\sigma_{i+1} \cdot \sigma_{i} \cdot \sigma_{i+1}$ for each $i \in\{1, \ldots, n-2\}$. For each group G we have the action of B_{n} on G^{n} defined by the condition:

$$
\sigma_{i} \cdot\left(g_{1}, \ldots, g_{n}\right)=\left(g_{1}, \ldots, g_{i-1}, g_{i} \cdot g_{i+1} \cdot g_{i}^{-1}, g_{i}, g_{i+2}, \ldots, g_{n}\right)
$$

for all $i \in\{1, \ldots, n-1\}$ and $g_{1}, \ldots, g_{n} \in G$. Note that

$$
g_{1}^{\prime} \cdot \ldots \cdot g_{n}^{\prime}=g_{1} \cdot \ldots \cdot g_{n}
$$

for all $\sigma \in B_{n}$ and $g_{1}, \ldots, g_{n} \in G$, where

$$
\left(g_{1}^{\prime}, \ldots, g_{n}^{\prime}\right):=\sigma \cdot\left(g_{1}, \ldots, g_{n}\right) .
$$

Now we fix points x_{0}, \ldots, x_{n} of \mathbb{C}. By F_{n} we denote the fundamental group of the space $\mathbb{C} \backslash\left\{x_{1}, \ldots, x_{n}\right\}$ at x_{0}. By a non-crossing loop we mean every element of F_{n} induced by a positively oriented continuous embedding of S^{1} into $\mathbb{C} \backslash\left\{x_{1}, \ldots, x_{n}\right\}$ which maps 1 to x_{0}. By R we denote the set of the non-crossing loops whose interior contains exactly one of the points x_{1}, \ldots, x_{n}. One easily checks that $f \cdot g \cdot f^{-1} \in R$ for all $f, g \in R$. Consequently, the action of B_{n} on F_{n}^{n} induces the action of B_{n} on R^{n}.

Let W_{n} be the universal Coxeter group, i.e. the group generated by the elements s_{1}, \ldots, s_{n} such that $s_{i}^{2}=1$ for each $i \in\{1, \ldots, n\}$. If we fix $f_{1}, \ldots, f_{n} \in R$ such that the interior of f_{i} contains x_{i} for each $i \in\{1, \ldots, n\}$, then there exists the group epimorphism $\pi: F_{n} \rightarrow S_{n}$ induced by the assignment $f_{i} \mapsto s_{i}$ for $i \in\{1, \ldots, n\}$.

For an element g of a group G and subset $A \subseteq G$ of by an A decomposition of g we mean every sequence $\left(a_{1}, \ldots, a_{k}\right)$ of elements of A such that $g=a_{1} \cdot \ldots \cdot a_{k}$. We denote by $\ell_{A}(g)$ the minimal k such that there exists an A-decomposition $\left(a_{1}, \ldots, a_{k}\right)$ of g. An A-decomposition $\left(a_{1}, \ldots, a_{k}\right)$ of g is called reduced if $k=\ell_{A}(g)$. We denote by $\operatorname{Red}_{A}(g)$ the set of the reduced A-decompositions of g.

Let $\pi: W_{n} \rightarrow S_{n}$ be as above and put $T:=\pi(R), g:=f_{1} \cdot \ldots \cdot f_{n}$ and $c:=\pi(g)=s_{1} \cdot \ldots \cdot s_{n}$. Then $\ell_{R}(g)=n=\ell_{T}(c)$. In particular, the action of B_{n} on R^{n} induces the actions of B_{n} on $\operatorname{Red}_{R}(g)$ and
$\operatorname{Red}_{T}(n)$. The main theorem of the talk states that these actions are simply transitive.

