MONOID ALGEBRAS OF PROJECTION FUNCTORS

BASED ON THE TALK BY ANNA-LOUISE PAASCH

Throughout the talk we assume that A is a finite dimensional algebra over a field k.

For a simple A-module S we define the functor $P_{S}: \bmod A \rightarrow \bmod A$ by the formula:

$$
P_{S}(M):=M / \sum_{f \in \operatorname{Hom}_{A}(S, M)} \operatorname{Im} f .
$$

Obviously the image of the functor P_{S} contains the kernel of the functor $\operatorname{Hom}_{A}(S,-)$. Moreover, if $\operatorname{Ext}_{A}^{1}(S, S)=0$, then we an equality. By Π_{A} we denote the monoid generated by the functors P_{S}, where S runs through the simple A-modules. It is an interesting problem to investigate the structure of the monoid Π_{A}.

One easily verifies that if S a simple A-module with $\operatorname{Ext}_{A}^{1}(S, S)=0$, then $P_{S}^{2} \sim P_{S}$. Moreover, if S and T are simple A-modules such that $\operatorname{Ext}_{A}^{1}(S, S)=0=\operatorname{Ext}_{A}^{1}(T, T)$ and $\operatorname{Ext}_{A}^{1}(T, S)=0$, then

$$
P_{S} \circ P_{T} \circ P_{S} \sim P_{T} \circ P_{S} \sim P_{T} \circ P_{S} \circ P_{T} .
$$

For the rest of the talk we assume that A is the path algebra of a quiver Q. Motivated by the above observations we define the algebra \mathcal{B}_{Q} as the algebra with the generators $X_{i}, i \in Q_{0}$, such that $X_{i}^{2}=X_{i}$ for each vertex $i \in Q_{0}$, if i and j are vertices of the quiver Q joined by an arrow, then

$$
X_{i} \cdot X_{j} \cdot X_{i}=X_{j} \cdot X_{i}=X_{j} \cdot X_{i} \cdot X_{j},
$$

and if i and j are vertices of the quiver Q, which are not joined by an arrow, then $X_{i} \cdot X_{j}=X_{j} \cdot X_{i}$. If the canonical morphism $\mathcal{B}_{Q} \rightarrow k \Pi_{A}$ is an isomorphism, then the above described relations define the monoid Π_{A}. This fact has been confirmed for some classes of quivers.

In the rest of the talk we will study the algebra \mathcal{B}_{Q}. One may check that the algebra \mathcal{B}_{Q} is basic and finite dimensional. The simple $\mathcal{B}_{Q^{-}}$ modules corresponds to the subsets of the set of vertices of the quiver Q. We denote the simple $\mathcal{B}_{Q_{-}}$-modules corresponding to a subset M by E_{M}. If M and N are two such sets, then $\operatorname{dim}_{k} \operatorname{Ext}_{\mathcal{B}_{Q}}^{1}\left(E_{M}, E_{N}\right) \leq 1$ and $\operatorname{Ext}_{\mathcal{B}_{Q}}^{1}\left(E_{M}, E_{N}\right) \neq 0$ if and only if $M \backslash N \neq \varnothing \neq N \backslash M$ and each vertex from the set $M \backslash N$ is connected in the quiver Q with each vertex from the set $N \backslash M$. In particular, this implies that if Q is not an equioriented quiver of type \mathbb{A}, then the Gabriel quiver of the
algebra \mathcal{B}_{Q} has exactly 3 connected components. On the other hand, if Q is an equioriented quiver of type \mathbb{A} with n vertices, then it has $n+1$ connected components. Moreover, in the latter case the algebra \mathcal{B}_{Q} is an incidence algebra. More precisely, we we denote by \mathcal{P}_{n} the partial set consisting of the subsets of the set $\{1, \ldots, n\}$ with the order relation defined by: if I and J are subsets of the set $\{1, \ldots, n\}$, then $I \leq J$ if and only if $|I|=|J|$ and $i_{l}<j_{l}$ for each $l \in\{1, \ldots,|I|\}$, where $I=\left\{i_{1}<\cdots<i_{|I|}\right\}$ and $J=\left\{j_{1}<\cdots<j_{|J|}\right\}$. Then the incidence algebra of the poset \mathcal{P}_{n} is isomorphic to the algebra \mathcal{B}_{Q}.

