MONOID ALGEBRAS OF PROJECTION FUNCTORS

BASED ON THE TALK BY ANNA-LOUISE PAASCH

Throughout the talk we assume that A is a finite dimensional algebra over a field k.

For a simple A-module S we define the functor $P_S : \mod A \to \mod A$ by the formula:

$$P_S(M) := M / \sum_{f \in \operatorname{Hom}_A(S,M)} \operatorname{Im} f.$$

Obviously the image of the functor P_S contains the kernel of the functor $\operatorname{Hom}_A(S, -)$. Moreover, if $\operatorname{Ext}_A^1(S, S) = 0$, then we an equality. By Π_A we denote the monoid generated by the functors P_S , where Sruns through the simple A-modules. It is an interesting problem to investigate the structure of the monoid Π_A .

One easily verifies that if S a simple A-module with $\operatorname{Ext}_A^1(S, S) = 0$, then $P_S^2 \sim P_S$. Moreover, if S and T are simple A-modules such that $\operatorname{Ext}_A^1(S,S) = 0 = \operatorname{Ext}_A^1(T,T)$ and $\operatorname{Ext}_A^1(T,S) = 0$, then

$$P_S \circ P_T \circ P_S \sim P_T \circ P_S \sim P_T \circ P_S \circ P_T.$$

For the rest of the talk we assume that A is the path algebra of a quiver Q. Motivated by the above observations we define the algebra \mathcal{B}_Q as the algebra with the generators X_i , $i \in Q_0$, such that $X_i^2 = X_i$ for each vertex $i \in Q_0$, if i and j are vertices of the quiver Q joined by an arrow, then

$$X_i \cdot X_j \cdot X_i = X_j \cdot X_i = X_j \cdot X_i \cdot X_j,$$

and if *i* and *j* are vertices of the quiver Q, which are not joined by an arrow, then $X_i \cdot X_j = X_j \cdot X_i$. If the canonical morphism $\mathcal{B}_Q \to k \Pi_A$ is an isomorphism, then the above described relations define the monoid Π_A . This fact has been confirmed for some classes of quivers.

In the rest of the talk we will study the algebra \mathcal{B}_Q . One may check that the algebra \mathcal{B}_Q is basic and finite dimensional. The simple \mathcal{B}_Q modules corresponds to the subsets of the set of vertices of the quiver Q. We denote the simple \mathcal{B}_Q -modules corresponding to a subset M by E_M . If M and N are two such sets, then $\dim_k \operatorname{Ext}^1_{\mathcal{B}_Q}(E_M, E_N) \leq 1$ and $\operatorname{Ext}^1_{\mathcal{B}_Q}(E_M, E_N) \neq 0$ if and only if $M \setminus N \neq \emptyset \neq N \setminus M$ and each vertex from the set $M \setminus N$ is connected in the quiver Q with each vertex from the set $N \setminus M$. In particular, this implies that if Q is not an equioriented quiver of type \mathbb{A} , then the Gabriel quiver of the

Date: 28.10.2011.

ANNA-LOUISE PAASCH

algebra \mathcal{B}_Q has exactly 3 connected components. On the other hand, if Q is an equioriented quiver of type \mathbb{A} with n vertices, then it has n+1 connected components. Moreover, in the latter case the algebra \mathcal{B}_Q is an incidence algebra. More precisely, we we denote by \mathcal{P}_n the partial set consisting of the subsets of the set $\{1, \ldots, n\}$ with the order relation defined by: if I and J are subsets of the set $\{1, \ldots, n\}$, then $I \leq J$ if and only if |I| = |J| and $i_l < j_l$ for each $l \in \{1, \ldots, |I|\}$, where $I = \{i_1 < \cdots < i_{|I|}\}$ and $J = \{j_1 < \cdots < j_{|J|}\}$. Then the incidence algebra of the poset \mathcal{P}_n is isomorphic to the algebra \mathcal{B}_Q .