MATRIX IDENTITIES WITH FORMS

BASED ON THE TALK BY ARTEM LOPATIN

Throughout the talk we fix an infinite field \mathbb{F} and positive integers d and n. Next, we denote by V the product of d copies of the space of the $n \times n$ matrices. The group $G:=\mathrm{GL}(n)$ acts on V by conjugation and this action induces the action of G on the ring R of the polynomial functions on V. We are interested in the ring R^{G} of the G-invariants.

For each $k \in\{1,2, \ldots, d\}$ we denote by X_{k} the k-th generic matrix, i.e., $X_{k} \in \mathbb{M}_{n}(R)$ and

$$
X_{k}\left(M_{1}, M_{2}, \ldots, M_{d}\right)=M_{k}
$$

for any $\left(M_{1}, M_{2}, \ldots, M_{d}\right) \in V$. Let X be the free monoid generated by the letters $x_{1}, x_{2}, \ldots, x_{d}$ and $\mathbb{F} X$ the vector space with basis X. Let $\psi: \mathbb{F} X \rightarrow \mathbb{M}_{n}(R)$ be the k-linear extension of the homomorphism $X \rightarrow$ $\mathbb{M}_{n}(R)$ defined by the condition $\psi\left(x_{k}\right)=X_{k}$ for each $k \in\{1,2, \ldots, d\}$. If we define the functions $\sigma_{1}, \ldots, \sigma_{n}: \mathbb{M}_{n}(R) \rightarrow R$ by the condition

$$
T^{n}-\sigma_{1}(A) \cdot T^{n-1}+\ldots+(-1)^{n} \cdot \sigma_{n}(A)=\operatorname{det}\left(T \cdot \operatorname{Id}_{n}-A\right)
$$

for each $A \in \mathbb{M}_{n}(R)$, then $R_{G}(T)$ is generated by the elements $\sigma_{t}(\psi(a))$, where $t \in\{1,2, \ldots, d\}$ and $a \in \mathbb{F} X$. In other words, if we denote by $\sigma(X)$ the polynomial algebra generated by the elements $\sigma_{t, a}, t \in \mathbb{N}_{+}$ and $a \in \mathbb{F} X$, then we have the epimorphism $\Psi: \sigma(X) \rightarrow R^{G}$ given by the condition

$$
\Psi\left(\sigma_{t, a}\right)=\sigma_{t}(\psi(a))
$$

for any $t \in \mathbb{N}_{+}$and $a \in \mathbb{F} X$, where we put $\sigma_{t}:=0$ for $t>n$. Our next aim will be to understand the kernel K of this map.

The first class of relations comes from a formula due to Amitsur, which we describe now. Let Λ be the free monoid generated by the letters x and y. By a cycle which mean every element c of Λ of positive length such that there is no element c_{0} of Λ and a positive integer m such that $c=c_{0}^{m}$. We call two cycles equivalent if one is obtained form the other by a rotation. We denote by \mathcal{C} a set of representatives of the equivalence classes of the cycles. If $A, B \in \mathbb{M}_{n}(R)$, then by $\phi_{A, B}$ we denote the homomorphism $\Lambda \rightarrow \mathbb{M}_{n}(R)$ induced by the conditions

$$
\psi_{A, B}(x):=A \quad \text { and } \quad \psi_{A, B}(y):=B .
$$

Then

$$
\begin{aligned}
& \sigma_{t}(A+B)=\sum_{s \geq 1} \sum_{\substack{c_{1}, c_{2}, \ldots, c_{s} \in \mathcal{C} \\
\text { pairwise different }}} \sum_{\substack{k_{1}, k_{2}, \ldots, k_{s} \in\{1,2, \ldots, n\} \\
k_{1} \cdot \ell\left(c_{1}\right)+k_{2} \ell \ell\left(c_{2}\right)+\ldots+k_{s} \cdot \ell\left(c_{s}\right)=t}} \\
& (-1)^{t-\left(k_{1}+k_{2}+\ldots+k_{s}\right)} \cdot \sigma_{k_{1}}\left(\psi_{A, B}\left(c_{1}\right)\right) \cdot \sigma_{k_{2}}\left(\psi_{A, B}\left(c_{2}\right)\right) \cdot \ldots \cdot \sigma_{k_{s}}\left(\psi_{A, B}\left(c_{s}\right)\right)
\end{aligned}
$$

for any $t \in \mathbb{N}_{+}$and $A, B \in \mathbb{M}_{n}(R)$. For example,

$$
\begin{gathered}
\sigma_{1}(A+B)=\sigma_{1}(A)+\sigma_{1}(B) \\
\sigma_{2}(A+B)=\sigma_{2}(A)+\sigma_{2}(B)-\sigma_{1}(A \cdot B)+\sigma_{1}(A) \cdot \sigma_{1}(B)
\end{gathered}
$$

and

$$
\begin{aligned}
\sigma_{3}(A+B)= & \sigma_{3}(A)+\sigma_{3}(B)+\sigma_{1}\left(A^{2} \cdot B\right)+\sigma_{1}\left(A \cdot B^{2}\right)+\sigma_{2}(A) \cdot \sigma_{1}(B) \\
& +\sigma_{1}(A) \cdot \sigma_{2}(B)-\sigma_{1}(A) \cdot \sigma_{1}(A \cdot B)-\sigma_{1}(A \cdot B) \sigma_{1}(B)
\end{aligned}
$$

Inspired by the above formula, we define the element $F_{t}(a, b)$ of $\sigma(X)$ for $t \in \mathbb{N}_{+}$and $a, b \in \mathbb{F} X$ by the formula

$$
\begin{aligned}
F_{t, a, b}:= & \sum_{\substack{s \geq 1}} \sum_{\substack{c_{1}, c_{2}, \ldots, c_{s} \in \mathcal{C} \\
\text { pairwise different }}} \sum_{\substack{k_{1}, k_{2}, \ldots, k_{s} \in\{1,2, \ldots, n\} \\
k_{1} \ell\left(c_{1}\right)+k_{2} \cdot \ell\left(c_{2}\right)+\ldots+k_{s} \cdot \ell\left(c_{s}\right)=t}} \\
& (-1)^{t-\left(k_{1}+k_{2}+\ldots+k_{s}\right) \cdot \sigma_{k_{1}, \varphi_{a, b}\left(c_{1}\right)} \cdot \sigma_{k_{2}, \varphi_{a, b}\left(c_{2}\right)} \cdot \ldots \cdot \sigma_{k_{s}, \varphi_{a, b}\left(c_{s}\right),},}
\end{aligned}
$$

where $\varphi_{a, b}: \Lambda \rightarrow \mathbb{F} X$ is the homomorphism induced by the conditions

$$
\varphi_{a, b}(x):=a \quad \text { and } \quad \varphi_{a, b}(y):=b .
$$

Next, observe that for each $t \in \mathbb{N}_{+}$and $l>0$, there exists a polynomial $P_{t, l} \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ such that

$$
\sigma_{t}\left(A^{l}\right)=P_{t, l}\left(\sigma_{1}(A), \sigma_{2}(A), \ldots, \sigma_{n}(A)\right)
$$

Finally, let $\sigma^{\prime}(X)$ be the quotient of $\sigma(X)$ by the ideal generated by the elements:
(1) $\sigma_{t, a \cdot b}-\sigma_{t, b \cdot a}$ for $a, b \in X$ and $t \in \mathbb{N}_{+}$.
(2) $\sigma_{t, \alpha \cdot a}=\alpha^{t} \cdot \sigma_{t, a}$ for $\alpha \in \mathbb{F}, a \in X$ and $t \in \mathbb{N}_{+}$.
(3) $\sigma_{t, a+b}=F_{t, a, b}$ for $a, b \in \mathbb{F} X$ and $t \in \mathbb{N}_{+}$.
(4) $\sigma_{t}\left(a^{l}\right)=P_{t, l}\left(\sigma_{1, a}, \sigma_{2, a}, \ldots, \sigma_{t, a}\right)$.

Let $\pi: \sigma(X) \rightarrow \sigma^{\prime}(X)$ be the canonical injection. If $t \in \mathbb{N}_{+}$and $\mathbf{a}=$ $\left(a_{1}, a_{2}, \ldots, a_{r}\right) \in X^{r}$, then there exist $\sigma_{\mathbf{t}, \mathbf{a}}^{\prime} \in \sigma^{\prime}(X), \mathbf{t}=\left(t_{1}, t_{2}, \ldots, t_{r}\right) \in$ $\mathbb{N}^{r},|\mathbf{t}|:=t_{1}+t_{2}+\ldots+t_{r}=t$, such that
for all $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r} \in \mathbb{F}$. We denote by $\sigma_{\mathbf{t}, \mathbf{a}}$ a fixed inverse image of $\sigma_{\mathrm{t}, \mathrm{a}}^{\prime}$.

The main theorem says that K is generated by the following elements:
(0) $\sigma_{t, a}$ for $t>n$ and $a \in \mathbb{F} X$.
(1) $\sigma_{t, a \cdot b}-\sigma_{t, b \cdot a}$ for $a, b \in X$ and $t \in\{1,2, \ldots, n\}$.
(2) $\sigma_{t, \alpha \cdot a}=\alpha^{t} \cdot \sigma_{t, a}$ for $\alpha \in \mathbb{F}, a \in X$ and $t \in\{1,2, \ldots, n\}$.
(3) $\sigma_{t, a+b}=F_{t, a, b}$ for $a, b \in \mathbb{F} X$ and $t \in\{1,2, \ldots, n\}$.
(4) $\sigma_{t}\left(a^{l}\right)=P_{t, l}\left(\sigma_{1, a}, \sigma_{2, a}, \ldots, \sigma_{t, a}\right)$.
(5) $\sigma_{\mathbf{t}, \mathbf{a}}$ for $|\mathbf{t}| \in \mathbb{N}^{r}$ and $\mathbf{a} \in X^{r}, r \in \mathbb{N}_{+}$, such that $|\mathbf{t}| \in\{n+1, n+$ $2, \ldots, 2 \cdot n\}$.

