MATRIX IDENTITIES WITH FORMS

BASED ON THE TALK BY ARTEM LOPATIN

Throughout the talk we fix an infinite field \mathbb{F} and positive integers d and n. Next, we denote by V the product of d copies of the space of the $n \times n$ matrices. The group $G := \operatorname{GL}(n)$ acts on V by conjugation and this action induces the action of G on the ring R of the polynomial functions on V. We are interested in the ring R^G of the G-invariants.

For each $k \in \{1, 2, ..., d\}$ we denote by X_k the k-th generic matrix, i.e., $X_k \in \mathbb{M}_n(R)$ and

$$X_k(M_1, M_2, \dots, M_d) = M_k$$

for any $(M_1, M_2, \ldots, M_d) \in V$. Let X be the free monoid generated by the letters x_1, x_2, \ldots, x_d and $\mathbb{F}X$ the vector space with basis X. Let $\psi : \mathbb{F}X \to \mathbb{M}_n(R)$ be the k-linear extension of the homomorphism $X \to \mathbb{M}_n(R)$ defined by the condition $\psi(x_k) = X_k$ for each $k \in \{1, 2, \ldots, d\}$. If we define the functions $\sigma_1, \ldots, \sigma_n : \mathbb{M}_n(R) \to R$ by the condition

$$T^{n} - \sigma_{1}(A) \cdot T^{n-1} + \ldots + (-1)^{n} \cdot \sigma_{n}(A) = \det(T \cdot \operatorname{Id}_{n} - A)$$

for each $A \in \mathbb{M}_n(R)$, then $R_G(T)$ is generated by the elements $\sigma_t(\psi(a))$, where $t \in \{1, 2, \ldots, d\}$ and $a \in \mathbb{F}X$. In other words, if we denote by $\sigma(X)$ the polynomial algebra generated by the elements $\sigma_{t,a}, t \in \mathbb{N}_+$ and $a \in \mathbb{F}X$, then we have the epimorphism $\Psi : \sigma(X) \to R^G$ given by the condition

$$\Psi(\sigma_{t,a}) = \sigma_t(\psi(a))$$

for any $t \in \mathbb{N}_+$ and $a \in \mathbb{F}X$, where we put $\sigma_t := 0$ for t > n. Our next aim will be to understand the kernel K of this map.

The first class of relations comes from a formula due to Amitsur, which we describe now. Let Λ be the free monoid generated by the letters x and y. By a cycle which mean every element c of Λ of positive length such that there is no element c_0 of Λ and a positive integer msuch that $c = c_0^m$. We call two cycles equivalent if one is obtained form the other by a rotation. We denote by C a set of representatives of the equivalence classes of the cycles. If $A, B \in M_n(R)$, then by $\phi_{A,B}$ we denote the homomorphism $\Lambda \to M_n(R)$ induced by the conditions

 $\psi_{A,B}(x) := A$ and $\psi_{A,B}(y) := B$.

Date: 02.12.2011.

Then

$$\sigma_t(A+B) = \sum_{s \ge 1} \sum_{\substack{c_1, c_2, \dots, c_s \in \mathcal{C} \\ \text{pairwise different } k_1 \cdot \ell(c_1) + k_2 \cdot \ell(c_2) + \dots + k_s \cdot \ell(c_s) = t}} \sum_{\substack{(-1)^{t-(k_1+k_2+\dots+k_s)} \cdot \sigma_{k_1}(\psi_{A,B}(c_1)) \cdot \sigma_{k_2}(\psi_{A,B}(c_2)) \cdot \dots \cdot \sigma_{k_s}(\psi_{A,B}(c_s))}} (-1)^{t-(k_1+k_2+\dots+k_s)} \cdot \sigma_{k_1}(\psi_{A,B}(c_1)) \cdot \sigma_{k_2}(\psi_{A,B}(c_2)) \cdot \dots \cdot \sigma_{k_s}(\psi_{A,B}(c_s))}$$

for any $t \in \mathbb{N}_+$ and $A, B \in \mathbb{M}_n(R)$. For example,
 $\sigma_1(A+B) = \sigma_1(A) + \sigma_1(B),$
 $\sigma_2(A+B) = \sigma_2(A) + \sigma_2(B) - \sigma_1(A \cdot B) + \sigma_1(A) \cdot \sigma_1(B)$

and

$$\sigma_3(A+B) = \sigma_3(A) + \sigma_3(B) + \sigma_1(A^2 \cdot B) + \sigma_1(A \cdot B^2) + \sigma_2(A) \cdot \sigma_1(B) + \sigma_1(A) \cdot \sigma_2(B) - \sigma_1(A) \cdot \sigma_1(A \cdot B) - \sigma_1(A \cdot B)\sigma_1(B).$$

Inspired by the above formula, we define the element $F_t(a, b)$ of $\sigma(X)$ for $t \in \mathbb{N}_+$ and $a, b \in \mathbb{F}X$ by the formula

$$F_{t,a,b} := \sum_{s \ge 1} \sum_{\substack{c_1, c_2, \dots, c_s \in \mathcal{C} \\ \text{pairwise different } k_1 \cdot \ell(c_1) + k_2 \cdot \ell(c_2) + \dots + k_s \cdot \ell(c_s) = t \\ (-1)^{t - (k_1 + k_2 + \dots + k_s)} \cdot \sigma_{k_1, \varphi_{a,b}(c_1)} \cdot \sigma_{k_2, \varphi_{a,b}(c_2)} \cdot \dots \cdot \sigma_{k_s, \varphi_{a,b}(c_s)}$$

where $\varphi_{a,b}: \Lambda \to \mathbb{F}X$ is the homomorphism induced by the conditions

$$\varphi_{a,b}(x) := a$$
 and $\varphi_{a,b}(y) := b$.

Next, observe that for each $t \in \mathbb{N}_+$ and l > 0, there exists a polynomial $P_{t,l} \in \mathbb{F}[x_1, \ldots, x_n]$ such that

 $\sigma_t(A^l) = P_{t,l}(\sigma_1(A), \sigma_2(A), \dots, \sigma_n(A)).$

Finally, let $\sigma'(X)$ be the quotient of $\sigma(X)$ by the ideal generated by the elements:

- (1) $\sigma_{t,a\cdot b} \sigma_{t,b\cdot a}$ for $a, b \in X$ and $t \in \mathbb{N}_+$.
- (2) $\sigma_{t,\alpha \cdot a} = \alpha^t \cdot \sigma_{t,a}$ for $\alpha \in \mathbb{F}$, $a \in X$ and $t \in \mathbb{N}_+$.
- (3) $\sigma_{t,a+b} = F_{t,a,b}$ for $a, b \in \mathbb{F}X$ and $t \in \mathbb{N}_+$.
- (4) $\sigma_t(a^l) = P_{t,l}(\sigma_{1,a}, \sigma_{2,a}, \dots, \sigma_{t,a}).$

Let $\pi : \sigma(X) \to \sigma'(X)$ be the canonical injection. If $t \in \mathbb{N}_+$ and $\mathbf{a} =$ $(a_1, a_2, \ldots, a_r) \in X^r$, then there exist $\sigma'_{\mathbf{t}, \mathbf{a}} \in \sigma'(X), \mathbf{t} = (t_1, t_2, \ldots, t_r) \in$ \mathbb{N}^r , $|\mathbf{t}| := t_1 + t_2 + \ldots + t_r = t$, such that

$$\pi(\sigma_{t,\lambda_1\cdot a_1+\lambda_2\cdot a_2+\ldots+\lambda_r\cdot a_r}) = \sum_{\mathbf{t}\in\mathbb{N}:|\mathbf{t}|=t}\lambda_1^{t_1}\cdot\lambda_2^{t_2}\cdot\ldots\cdot\lambda_r^{t_r}\cdot\sigma_{\mathbf{t},\mathbf{a}}'$$

for all $\lambda_1, \lambda_2, \ldots, \lambda_r \in \mathbb{F}$. We denote by $\sigma_{\mathbf{t},\mathbf{a}}$ a fixed inverse image of

 $\sigma'_{\mathbf{t},\mathbf{a}}.$ The main theorem says that K is generated by the following elements:

(0) $\sigma_{t,a}$ for t > n and $a \in \mathbb{F}X$.

 $\mathbf{2}$

- (1) $\sigma_{t,a\cdot b} \sigma_{t,b\cdot a}$ for $a, b \in X$ and $t \in \{1, 2, \dots, n\}$. (2) $\sigma_{t,\alpha\cdot a} = \alpha^t \cdot \sigma_{t,a}$ for $\alpha \in \mathbb{F}$, $a \in X$ and $t \in \{1, 2, \dots, n\}$. (3) $\sigma_{t,a+b} = F_{t,a,b}$ for $a, b \in \mathbb{F}X$ and $t \in \{1, 2, \dots, n\}$. (4) $\sigma_t(a^l) = P_{t,l}(\sigma_{1,a}, \sigma_{2,a}, \dots, \sigma_{t,a})$. (5) $\sigma_{\mathbf{t},\mathbf{a}}$ for $|\mathbf{t}| \in \mathbb{N}^r$ and $\mathbf{a} \in X^r$, $r \in \mathbb{N}_+$, such that $|\mathbf{t}| \in \{n+1, n+1\}$. $2,\ldots,2\cdot n\}.$