DIRECT SUMMANDS OF HOMOLOGICAL FUNCTORS

BASED ON THE TALK BY ALEX MARTSINKOVSKY

The aim of this talk is to present a proof (due to Auslander) of the following theorem.

Theorem. Let C be an abelian category with enough projectives. Let F be a direct summand of the functor $\operatorname{Ext}^{1}_{\mathcal{C}}(C, -)$ for an object C of C. If either C has countable direct sums or $\operatorname{pd}_{\mathcal{C}} C < \infty$, then there exists an object D of C such that

$$F \simeq \operatorname{Ext}^{1}_{\mathcal{C}}(D, -).$$

The former part (if C has countable direct sums) of this theorem was first proved by Freyd, while the latter (if $\operatorname{pd}_{\mathcal{C}} C < \infty$) is due to Auslander.

We fix an abelian category \mathcal{C} . Let $\operatorname{Mod} \mathbb{Z}$ be the category of abelian groups. Recall that a functor $F : \mathcal{C} \to \operatorname{Mod} \mathbb{Z}$ is called finitely presented, if there exists a map $f : A \to B$ such that

$$C \simeq \operatorname{Coker}(f, -)_{\mathcal{C}} \simeq F.$$

Here, if * is either an object or a morphism in C, then we put

$$(*, -)_{\mathcal{C}} := \operatorname{Hom}_{\mathcal{C}}(*, -)$$
 and $(*, -)_{\mathcal{C}}^{1} := \operatorname{Ext}_{\mathcal{C}}^{1}(*, -)_{\mathcal{C}}^{1}$

We denote by $\check{\mathcal{C}}$ the category of finitely presented functors $\mathcal{C} \to \operatorname{Mod} \mathbb{Z}$. This is an abelian category. Moreover, by $\check{\mathcal{C}}_0$ we denote the full subcategory of $\check{\mathcal{C}}$ formed by these functors, for which we may choose f to be a monomorphism. The category $\check{\mathcal{C}}_0$ is again abelian. Note that $(A, -)_{\mathcal{C}}^1$ is an object of $\check{\mathcal{C}}_0$ for each object A of \mathcal{C} . Indeed, in \mathcal{C} we have an exact sequence

 $0 \to \Omega A \to P \to A \to 0$

with P projective, which induces a sequence

$$0 \to (A, -)_{\mathcal{C}} \to (P, -)_{\mathcal{C}} \to (\Omega A, -)_{\mathcal{C}} \to (A, -)_{\mathcal{C}}^{1} \to 0.$$

We have the following two easy lemmas.

Lemma. If G is an object of \check{C}_0 , there there exists an object C of C such that G is a subobject of $(C, -)^1_{\mathcal{C}}$.

Proof. By definition there exists a monomorphism $f : A \to B$ such that $\operatorname{Coker}(f, -)_{\mathcal{C}} \simeq G$. On the other hand, we have an exact sequence

$$(B, -)_{\mathcal{C}} \xrightarrow{(f, -)_{\mathcal{C}}} (A, -)_{\mathcal{C}} \to (\operatorname{Coker} f, -)^{1}_{\mathcal{C}},$$

Date: 04.07.2014.

hence we get an inclusion

$$G \simeq \operatorname{Coker}(f, -)_{\mathcal{C}} \hookrightarrow (\operatorname{Coker} f, -)^{1}_{\mathcal{C}}.$$

Lemma. A finitely presented functor $F : \mathcal{C} \to \operatorname{Mod} \mathbb{Z}$ is half exact if and only if $\operatorname{Ext}^{1}_{\check{\mathcal{C}}}(G, F) = 0$ for each functor G in $\check{\mathcal{C}}_{0}$.

Proof. Let

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

be an exact sequence in \mathcal{C} . If $G = \operatorname{Coker}(f, -)_{\mathcal{C}}$, then we have the following projective presentation

$$0 \to (C, -)_{\mathcal{C}} \to (B, -)_{\mathcal{C}} \to (A, -) \to G \to 0$$

in $\check{\mathcal{C}}$, hence the Yoneda lemma implies that

$$\operatorname{Ext}^{1}_{\check{\mathcal{C}}}(G, F) \simeq \operatorname{Im} Ff / \operatorname{Ker} Fg.$$

Now the claim follows.

The above two lemmas immediately imply the following.

Proposition. The following are equivalent for a functor F in \mathcal{C}_0 .

- (1) F is half exact.
- (2) $\operatorname{Ext}^{1}_{\check{\mathcal{C}}_{0}}(G, F) = 0$ for each functor G in $\check{\mathcal{C}}_{0}$.
- (3) F is injective in \check{C}_0 .
- (4) F is a direct summand of $(C, -)^1_{\mathcal{C}}$ for some object C of C.

Now we fix in addition an object C of C and a direct summand F of $\operatorname{Ext}^{1}_{\mathcal{C}}(C, -)$.

From the Yoneda lemma there exists an endomorphism f of C such that $F = \text{Ker}(f, -)^1_{\mathcal{C}}$. If $g: P \to C$ is an epimorphism with P projective, then we get an exact sequence

$$0 \to A \to C \oplus P \xrightarrow{(g,f)} C \to 0,$$

which in turn induces the long exact sequence

$$0 \to F \to (C, -)^{1}_{\mathcal{C}} \to (C, -)^{1}_{\mathcal{C}} \to (A, -)^{1}_{\mathcal{C}} \to (\Omega C, -)^{1}_{\mathcal{C}} \to (\Omega C, -)^{1}_{\mathcal{C}} \to (\Omega A, -)^{1}_{\mathcal{C}} \to \cdots,$$

where for an object B of C we denote by ΩB the kernel of a chosen (and fixed) epimorphism $Q \to B$ with Q projective (we also assume that $\Omega B = 0$ if B is projective). Since F is injective in \check{C}_0 according to the above proposition, this sequences splits. Consequently,

$$F \oplus \prod_{i \ge 1} (\Omega^i C, -) \oplus \prod_{i \ge 0} (\Omega^{2i+1} A, -) \simeq \prod_{i \ge 1} (\Omega^i C, -) \oplus \prod_{i \ge 0} (\Omega^{2i} A, -).$$

If \mathcal{C} has countable direct sums, then we get an isomorphism

$$F \oplus (M, -)^{1}_{\mathcal{C}} \simeq (N, -)^{1}_{\mathcal{C}},$$

where

$$M := \bigoplus_{i \ge 1} \Omega^i C \oplus \bigoplus_{i \ge 0} \Omega^{2i+1} A$$

and

$$N := \bigoplus_{i \ge 1} \Omega^i C \oplus \bigoplus_{i \ge 0} \Omega^{2i} A.$$

We get the same conclusion, if $\operatorname{pd}_{\mathcal{C}} C < \infty$, since then also $\operatorname{pd}_{\mathcal{C}} A < \infty$, and $\Omega^i C = 0 = \Omega^i A$ for $i \gg 0$.

Now we use the following result due to Hilton and Rees.

Theorem. If $h : N \to M$ is a morphism in C, then $(h, -)^1_C$ is a monomorphism if and only if for each epimorphism $Q \to M$ with Q projective the induced epimorphism $N \oplus Q \to M$ splits.

We have an inclusion

$$(M, -)^1_{\mathcal{C}} \to F \oplus (M, -)^1_{\mathcal{C}} \simeq (N, -)^1_{\mathcal{C}},$$

which is given by a morphism $h: N \to M$ in \mathcal{C} . Fix an epimorphism $Q \to M$ with P projective. The above theorem implies that we get a split exact sequence

$$0 \to D \to N \oplus Q \to M \to 0,$$

which implies that $F \simeq (D, -)^1_{\mathcal{C}}$. This finishes the proof of our theorem. We present one more situation, where we have a similar conclusion.

Theorem. Let $G : \mathcal{A}^{\mathrm{op}} \times \mathcal{A} \to \operatorname{Mod} \mathbb{Z}$ be a bifunctor, where \mathcal{A} is an abelian category, such that for each object A of \mathcal{A} the natural map

$$(A, A)_{\mathcal{A}} \to \operatorname{Mor}(G(A, -), G(A, -))$$

is onto. If A is an object of finite length of \mathcal{A} and F is a direct summand of G(A, -), then there exists a subobject B of A such that

$$F \simeq G(B, -).$$

Proof. Let $\iota : F \to G(A, -)$ and $\pi : G(A, -) \to F$ be the canonical inclusion and projection (in particular, $\pi \circ \iota = \mathrm{Id}_F$). By our assumption there exists a morphism $f : A \to A$ such that

$$\iota \circ \pi = G(f, -).$$

If f is an epimorphism, then it is an isomorphism (since A has finite length) and $F \simeq G(A, -)$. Otherwise, we write $f = h \circ g$ for an epimorphism $g: A \to B$ and a monomorphism $h: B \to A$ (in particular, the length of B is smaller than the length of A). Note that

$$(\pi \circ G(g, -)) \circ (G(h, -) \circ \iota) = \pi \circ G(f, -) \circ \iota = \pi \circ \iota \circ \pi \circ \iota = \mathrm{Id}_F,$$

hence F is a direct summand of G(B, -) and the claim follows by induction.